A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures

Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.

[1]  Zheng Lou,et al.  Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers , 2013 .

[2]  Shengli Zhu,et al.  Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature. , 2013, Nanoscale.

[3]  Amine Bermak,et al.  Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors. , 2013, ACS nano.

[4]  Werner Weppner,et al.  Solid-state electrochemical gas sensors☆ , 1987 .

[5]  Yanshuang Wang,et al.  Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application , 2014 .

[6]  Kan Kan,et al.  Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NO(x) at room temperature. , 2015, Nanoscale.

[7]  Zhongchang Wang,et al.  Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts , 2012 .

[8]  Younan Xia,et al.  V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. , 2006, Nano letters.

[9]  Pietro Siciliano,et al.  Colloidal Counterpart of the TiO2-Supported V2O5 System: A Case Study of Oxide-on-Oxide Deposition by Wet Chemical Techniques. Synthesis, Vanadium Speciation, and Gas-Sensing Enhancement , 2013 .

[10]  Frank R. Wagner,et al.  Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study , 1999 .

[11]  Guohui Chen,et al.  High-Energy Faceted SnO₂-Coated TiO₂ Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor. , 2015, ACS applied materials & interfaces.

[12]  Yuan Wang,et al.  Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning , 2012 .

[13]  Zheng Lou,et al.  Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. , 2013, ACS applied materials & interfaces.

[14]  G. Sberveglieri,et al.  Co3O4/ZnO nanocomposites: from plasma synthesis to gas sensing applications. , 2012, ACS applied materials & interfaces.

[15]  Xueqin Liu,et al.  Effect of the morphology of V2O5/TiO2 nanoheterostructures on the visible light photocatalytic activity , 2013 .

[16]  Yang Liu,et al.  Self‐Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand , 2008 .

[17]  Xinyu Xue,et al.  Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. , 2012, ACS applied materials & interfaces.

[18]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[19]  Jiaqiang Xu,et al.  Selective BTEX sensor based on a SnO2/V2O5 composite , 2013 .

[20]  Hao Shen,et al.  A Highly Selective and Self‐Powered Gas Sensor Via Organic Surface Functionalization of p‐Si/n‐ZnO Diodes , 2014, Advanced materials.

[21]  Youbin Zheng,et al.  Gas sensing properties of p-type semiconducting vanadium oxide nanotubes , 2012 .

[22]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[23]  Seon Joo Park,et al.  Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. , 2011, ACS nano.

[24]  Oomman K Varghese,et al.  Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. , 2016, Nano letters.

[25]  W. Tremel,et al.  V2O5 Nanowires with an Intrinsic Peroxidase‐Like Activity , 2011 .

[26]  H. S. Kim,et al.  Structural, luminescent, and NO2 sensing properties of SnO2-core/V2O5-shell nanorods , 2013, Journal of Electroceramics.

[27]  Aapo Varpula,et al.  Transient characterization techniques for resistive metal-oxide gas sensors , 2011 .

[28]  Teng Fei,et al.  A class of hierarchical nanostructures: ZnO surface-functionalized TiO2 with enhanced sensing properties , 2013 .

[29]  Lili Xing,et al.  Core–Shell In2O3/ZnO Nanoarray Nanogenerator as a Self-Powered Active Gas Sensor with High H2S Sensitivity and Selectivity at Room Temperature , 2014 .

[30]  Wei Liu,et al.  Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. , 2013, Nano letters.

[31]  J. Fujii,et al.  Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2 , 2015, Nature Communications.

[32]  S. S. Kim,et al.  Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2 , 2013 .

[33]  Yangong Zheng,et al.  Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process , 2012 .

[34]  Cheng-Fu Yang,et al.  Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors , 2014, Nanoscale Research Letters.

[35]  Mohammad Reza Vaezi,et al.  Synthesis of TiO2/SnO2 core shell nanocomposite by chemical route and its gas sensing properties , 2012 .

[36]  Na Wang,et al.  Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications , 2008 .

[37]  Xiuli He,et al.  Effect of V2O5 coating on NO2 sensing properties of WO3 thin films , 2005 .

[38]  Hyojin Kim,et al.  Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S , 2015, Scientific Reports.

[39]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[40]  Qing Peng,et al.  Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials , 2005 .

[41]  Xiaoyan Yan,et al.  Chemical bath deposition of Cu2O quantum dots onto ZnO nanorod arrays for application in photovoltaic devices , 2015 .

[42]  F. Solzbacher,et al.  Structural and gas-sensing properties of V2O5–MoO3 thin films for H2 detection , 2001 .

[43]  X. Liu,et al.  Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response , 2014 .

[44]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .