Magnetic and Transport Properties of Single-Crystal YbPtGe

The magnetic and transport properties of single-crystal YbPtGe with the TiNiSi-type orthorhombic structure are presented. It is revealed that YbPtGe is a ferromagnet with T C = 5.4 K. Although both of its paramagnetic and ferromagnetic states show uniaxial anisotropy, its easy axis changes from the a -axis in the paramagnetic state to the c -axis below T C . Magnetizations at 2 K along the a -, b -, and c -axes saturate to constant values of 1.5 µ B for 6 kOe, 0.55 µ B for 2 kOe, and 1.1 µ B for 1 kOe, respectively. The magnetic contribution to the specific heat shows a Schottky anomaly centered at 90 K due to the crystalline electric field (CEF) effect that splits the eight-hold J -multiplet of the Yb 3+ ion into four doublets. The Sommerfeld coefficient γ is estimated to be 209 mJ/(mol·K 2 ) below T C . The magnetic entropy released up to T C is 52% of that of R ln 2, expected for the doublet ground state. Therefore, YbPtGe is a middle-classed heavy-fermion compound with a ferromagnetic transition.

[1]  R. Pöttgen,et al.  Bridgman Crystal Growth and Structure Refinement of YbPdGe and YbPtGe – Two Different Superstructures of the KHg2 Type , 2008 .

[2]  K. Katoh,et al.  Magnetic and transport properties of single crystal YbIrGe , 2005 .

[3]  R. Pöttgen,et al.  Synthesis and Structure of YbCuGe and YbIrGe , 2005, Monatshefte für Chemie - Chemical Monthly.

[4]  T. Sakakibara,et al.  Successive magnetic transitions in a frustrated compound YbAgGe , 2004 .

[5]  H. Kontani Generalized Kadowaki–Woods Relation in Heavy Fermion Systems with Orbital Degeneracy , 2003, cond-mat/0308484.

[6]  P. Canfield,et al.  Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals , 2003, cond-mat/0308517.

[7]  K. Katoh,et al.  Magnetic properties of YbTGe (T=Rh, Cu, Ag) , 2004 .

[8]  K. Kosuge,et al.  Deviation from the Kadowaki–Woods relation in Yb-based intermediate-valence systems , 2003, cond-mat/0302325.

[9]  A. Oyamada,et al.  Magnetic susceptibility and specific heat of CePdP and CePdAs , 2002 .

[10]  T. Takabatake,et al.  YbFeGe, a new structure type of equiatomic ternary germanides , 2000 .

[11]  Y. Grin,et al.  Low-temperature properties of the Yb-based heavy-fermion antiferromagnets YbPtIn, YbRhSn, and YbNiGa , 2000 .

[12]  T. Takabatake,et al.  Anisotropic Behavior of Magnetic and Transport Properties in CePdSb and CePtSb , 1999 .

[13]  H. Kadomatsu,et al.  Electrical and magnetic properties of YbPdGe and YbPtGe , 1998 .

[14]  F. Canepa,et al.  Phases around the 1:1:1 composition in the Yb–Au–Ge and Ca–Au–Ge systems , 1998 .

[15]  Sánchez,et al.  Competing Anisotropies in the Ferromagnetic Kondo-Lattice Compound YbNiSn: Observation of a Complex Magnetic Ground State under High Pressure. , 1996, Physical review letters.

[16]  Thompson,et al.  Anomalous hydrostatic pressure dependence of the Curie temperature of the Kondo-lattice compound YbNiSn to 38 GPa. , 1995, Physical review. B, Condensed matter.

[17]  A. Hamzić,et al.  YbNiSn, a ferromagnetic Kondo lattice , 1992 .

[18]  T. Mizushima,et al.  Magnetic Properties of the Dense Kondo Compound YbNiSn , 1991 .

[19]  Schlottmann,et al.  Thermodynamics of the single-channel Kondo impurity of spin S( <= (7/2) in a magnetic field. , 1989, Physical review. B, Condensed matter.

[20]  K. Kadowaki,et al.  Universal relationship of the resistivity and specific heat in heavy-Fermion compounds , 1986 .

[21]  U. Walter Treating crystal field parameters in lower than cubic symmetries , 1984 .

[22]  V. T. Rajan Magnetic Susceptibility and Specific Heat of the Coqblin-Schrieffer Model , 1983 .

[23]  H. Desgranges,et al.  Specific heat of the Kondo model , 1982 .

[24]  L. R. Windmiller,et al.  De Haas-van alphen effect and the Fermi surface of LaB6 , 1976 .