Programming based learning algorithms of neural networks with self-feedback connections

Discusses the learning problem of neural networks with self-feedback connections and shows that when the neural network is used as associative memory, the learning problem can be transformed into some sort of programming (optimization) problem. Thus, the rather mature optimization technique in programming mathematics can be used for solving the learning problem of neural networks with self-feedback connections. Two learning algorithms based on programming technique are presented. Their complexity is just polynomial. Then, the optimization of the radius of attraction of the training samples is discussed using quadratic programming techniques and the corresponding algorithm is given. Finally, the comparison is made between the given learning algorithm and some other known algorithms.