Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy.

We report a novel interferometry-based polarization coherent anti-Stokes Raman scattering (IP-CARS) implementation for effectively suppressing the nonresonant background while significantly amplifying the resonant signal for vibrational imaging. By modulating the phase difference between the two interference CARS signals generated from the same sample and measuring the peak-to-peak intensity of the periodically modulated interference CARS signal, the IP-CARS technique yields a sixfold improvement in the signal-to-background ratio compared with conventional CARS while providing an approximately 20-fold amplification of the resonant CARS signal compared with conventional polarization CARS. We demonstrate this method by imaging 4.69 microm polystyrene beads and unstained human epithelial cells immersed in water.