A twisted tale of the transverse-mass tail

[1]  D. Winterbottom Searches for Extended Higgs Sectors at CMS , 2022, Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022).

[2]  J. Butterworth,et al.  Testing the scalar triplet solution to CDF’s heavy W problem at the LHC , 2022, Physical Review D.

[3]  Rashmish K. Mishra,et al.  TF08 Snowmass Report: BSM Model Building , 2022, 2210.03075.

[4]  Prudhvi N. Bhattiprolu,et al.  Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021 , 2022, 2209.13128.

[5]  J. A. Dror,et al.  New Opportunities for Detecting Axion-Lepton Interactions. , 2022, Physical review letters.

[6]  H. Bahl,et al.  Tripling down on the W boson mass , 2022, The European Physical Journal C.

[7]  Jun Gao,et al.  Understanding PDF uncertainty in W boson mass measurements , 2022, Chinese Physics C.

[8]  C. Yuan,et al.  ResBos2 and the CDF W Mass Measurement , 2022, 2205.02788.

[9]  Zhaolong Yu,et al.  Electroweak dark matter model accounting for the CDF W -mass anomaly , 2022, Physical Review D.

[10]  G. Leontaris,et al.  Sterile neutrinos, $$0\nu \beta \beta $$ decay and the W-boson mass anomaly in a flipped SU(5) from F-theory , 2022, The European Physical Journal C.

[11]  Rick S. Gupta Running away from the T-parameter solution to the W mass anomaly , 2022, 2204.13690.

[12]  A. Alves,et al.  Impact of CDF-II measurement of $M_W$ on the electroweak legacy of the LHC Run II , 2022, 2204.10130.

[13]  L. Shang,et al.  Interpreting the $W$ mass anomaly in the vector-like quark models , 2022, 2209.08320.

[14]  Linda M. Carpenter,et al.  Changing patterns in electroweak precision fits with new color-charged states: Oblique corrections and the W -boson mass , 2022, Physical Review D.

[15]  Kaituo Zhang,et al.  Explaining W boson mass anomaly and dark matter with a U(1) dark sector , 2022, Chinese Physics C.

[16]  Poulami Mondal Enhancement of the W boson mass in the Georgi-Machacek model , 2022, Physics Letters B.

[17]  H. Okada,et al.  A model explaining the new CDF II W boson mass linking to muon $$g-2$$ g - 2 and dark matter , 2022, The European Physical Journal Plus.

[18]  S. Kanemura,et al.  Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference , 2022, Physics Letters B.

[19]  Junichiro Kawamura,et al.  $W$ boson mass and muon $g-2$ in a lepton portal dark matter model , 2022, 2204.07022.

[20]  Hiren H. Patel,et al.  On the W mass and new Higgs bosons , 2022, Physics Letters B.

[21]  Minshan Zheng,et al.  The $$W\ell \nu$$ W ℓ ν -vertex corrections to W-boson mass in the R-parity violating MSSM , 2022, AAPPS Bulletin.

[22]  Raymundo Ramos,et al.  Implications of the new CDF II W -boson mass on two-Higgs-doublet models , 2022, Physical Review D.

[23]  Jin Min Yang,et al.  A joint explanation of W-mass and muon g-2 in 2HDM , 2022, Chinese Physics C.

[24]  J. Zupan,et al.  On the implications of positive W mass shift , 2022, Journal of High Energy Physics.

[25]  Jae Sik Lee,et al.  Impact of the CDF W-mass anomaly on two Higgs doublet model , 2022, Physics Letters B.

[26]  J. Ellis,et al.  SMEFT analysis of mW , 2022, Journal of High Energy Physics.

[27]  Yu Cheng,et al.  Type-II seesaw triplet scalar effects on neutrino trident scattering , 2022, Physics Letters B.

[28]  G. Weiglein,et al.  New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector , 2022, Physics Letters B.

[29]  S. Jana,et al.  Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model. , 2022, Physical review letters.

[30]  Huayang Song,et al.  Electroweak phase transition in 2HDM under Higgs, Z-pole, and W precision measurements , 2022, Journal of High Energy Physics.

[31]  C. Cesarotti,et al.  Oblique Lessons from the $W$ Mass Measurement at CDF II , 2022, 2204.05283.

[32]  Y. Li,et al.  Correlating gravitational waves with W-boson mass, FIMP dark matter, and Majorana seesaw mechanism. , 2022, Science bulletin.

[33]  Zhen Liu,et al.  Speculations on the W-Mass Measurement at CDF , 2022, Chinese Physics C.

[34]  JiJi Fan,et al.  $W$-Boson Mass, Electroweak Precision Tests and SMEFT , 2022, 2204.04805.

[35]  F. Takahashi,et al.  Singlet extensions and W boson mass in light of the CDF II result , 2022, Physics Letters B.

[36]  Yun-Feng Liang,et al.  Using $\gamma$-ray observations of dwarf spheroidal galaxies to test the possible common origin of the W-boson mass anomaly and the GeV $\gamma$-ray/antiproton excesses , 2022, 2204.04688.

[37]  Yongcheng Wu,et al.  Electroweak precision fit and new physics in light of the W boson mass , 2022, Physical Review D.

[38]  A. Strumia Interpreting electroweak precision data including the W-mass CDF anomaly , 2022, Journal of High Energy Physics.

[39]  M. Pierini,et al.  Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits. , 2022, Physical review letters.

[40]  Joshua R. Smith,et al.  High-precision measurement of the W boson mass with the CDF II detector. , 2022, Science.

[41]  Y. S. Tsai,et al.  Inert Higgs Dark Matter for CDF II W-Boson Mass and Detection Prospects. , 2022, Physical review letters.

[42]  Q. Yuan,et al.  Explaining the GeV Antiproton Excess, GeV γ-Ray Excess, and W-Boson Mass Anomaly in an Inert Two Higgs Doublet Model. , 2022, Physical review letters.

[43]  S. Sekmen Highlights on Supersymmetry and Exotic Searches at the LHC , 2022, 2204.03053.

[44]  S. Mrenna,et al.  A comprehensive guide to the physics and usage of PYTHIA 8.3 , 2022, SciPost Physics Codebases.

[45]  Peter Eduard Meiring Constraining challenging regions of the SUSY parameter space with the CMS experiment , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[46]  A. Hinzmann Searches for Exotica , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[47]  R. E. Hall,et al.  Measurement of the W boson mass , 2021, Journal of High Energy Physics.

[48]  T. Roy,et al.  ALP-Pions generalized , 2021, 2112.13147.

[49]  M. Pierini,et al.  Global analysis of electroweak data in the Standard Model , 2021, Physical Review D.

[50]  J. Matias,et al.  B Flavor Anomalies: 2021 Theoretical Status Report , 2021, Annual Review of Nuclear and Particle Science.

[51]  M. Neubert,et al.  Flavor probes of axion-like particles , 2021, Journal of High Energy Physics.

[52]  S. Chatterjee Search for W' bosons decaying to a top and a bottom quark at sqrt(s)=13 TeV in the hadronic final state with CMS , 2021, Proceedings of The Ninth Annual Conference on Large Hadron Collider Physics — PoS(LHCP2021).

[53]  B. Heinemann,et al.  Constraining off-shell production of axionlike particles with Zγ and WW differential cross-section measurements , 2021, Physical Review D.

[54]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[55]  D. d’Enterria Collider constraints on axion-like particles , 2021, 2102.08971.

[56]  M. Raggi,et al.  Invisible decays of axion-like particles: constraints and prospects , 2020, Journal of High Energy Physics.

[57]  S. M. Etesami,et al.  Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at s=13TeV , 2020 .

[58]  W. Altmannshofer,et al.  Constraining axionlike particles from rare pion decays , 2019, Physical Review D.

[59]  Atlas Collaboration Observation of electroweak production of a same-sign $W$ boson pair in association with two jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector , 2019, 1906.03203.

[60]  Hoang Dai Nghia Nguyen,et al.  Search for electroweak diboson production in association with a high-mass dijet system in semileptonic final states in pp collisions at √s=13 TeV with the ATLAS detector , 2019, 1905.07714.

[61]  Hoang Dai Nghia Nguyen,et al.  Measurement of fiducial and differential W+W− production cross-sections at s√=13 TeV with the ATLAS detector , 2019 .

[62]  A. Hook Naturalness without new particles , 2019, Journal of High Energy Physics.

[63]  E. Graverini Flavour anomalies: a review , 2018, Journal of Physics: Conference Series.

[64]  A. Wulzer,et al.  Electroweak precision tests in high-energy diboson processes , 2018, Journal of High Energy Physics.

[65]  David O. Jones,et al.  New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.

[66]  A. Wulzer,et al.  Electroweak precision tests in high-energy diboson processes , 2017, 1712.01310.

[67]  N. Weiner,et al.  A viable QCD axion in the MeV mass range , 2017, Journal of High Energy Physics.

[68]  Martin Bauer,et al.  Collider probes of axion-like particles , 2017, 1708.00443.

[69]  M. D. Pietra,et al.  Measurement of W ± and Z -boson production cross sections in pp collisions at s=13 TeV with the ATLAS detector , 2016, 1603.09222.

[70]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[71]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[72]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[73]  R. K. Shivpuri,et al.  Measurement of the W boson mass with the D0 detector. , 2012, Physical review letters.

[74]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[75]  S. Dawson,et al.  Higgs triplets, decoupling, and precision measurements , 2008, 0809.4185.

[76]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[77]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[78]  P. G. Verdini,et al.  Measurement of the W boson mass and width in e+e- collisions at LEP , 2006, hep-ex/0605011.

[79]  J. Wacker,et al.  What precision electroweak physics says about the SU(6)/Sp(6) little Higgs model , 2003, hep-ph/0305275.

[80]  U. Cambridge,et al.  Mass bounds in a model with a triplet Higgs , 2003, hep-ph/0302256.

[81]  D. J. Miller,et al.  (Submitted to Physics Letters B) The OPAL Collaboration , 2000 .

[82]  Nicolas Produit,et al.  Measurement of mass and width of the W boson at LEP , 1999 .

[83]  Alexander Kusenko,et al.  Sterile Neutrinos , 1999, hep-ph/9903261.

[84]  Holdom Negative T from a dynamical left-handed neutrino mass. , 1996, Physical review. D, Particles and fields.

[85]  Hung,et al.  Negative delta rho with four families in the standard model. , 1994, Physical review. D, Particles and fields.

[86]  Zhaolong Yu,et al.  2022 GeV antiproton / gamma-ray excesses and the W -boson mass anomaly: three faces of ∼ 60 − 70 GeV dark matter particle? , 2022 .

[87]  Yun-Feng Liang,et al.  Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly , 2022 .

[88]  A. Djouadi,et al.  The 2HD+a model for a combined explanation of the possible excesses in the CDF M W measurement and ( g − 2 ) µ with Dark Matter , 2022 .

[89]  Minshan Zheng,et al.  The W (cid:96)ν -vertex corrections to W-boson mass in the R-parity violating MSSM , 2022 .

[90]  G. Leontaris,et al.  Sterile neutrinos, 0 νββ decay and the W-boson mass anomaly in a flipped SU ( 5 ) from F-theory , 2022 .

[91]  S. Kang,et al.  Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model , 2022 .

[92]  L. Wang 王,et al.  Joint explanation of W-mass and muon g–2 in the 2HDM , 2022 .

[93]  J. Isaacson ResBos2: Precision Resummation for the LHC ERA , 2017 .

[94]  S. Forte,et al.  The NNPDF Collaboration , 2010 .

[95]  Michael Staley,et al.  Going Beyond , 2008 .

[96]  Particle Data Group Review of Particle Physics , 1998 .