One-side-coated insert as a unique ophthalmic drug delivery system.

[1]  Susan C. Miller,et al.  A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits , 1981, Journal of Pharmacokinetics and Biopharmaceutics.

[2]  R. Gurny,et al.  Clinical evaluation of bioadhesive ophthalmic drug inserts (BODI) for the treatment of external ocular infections in dogs. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[3]  V. H. Lee,et al.  Pilocarpine permeability across ocular tissues and cell cultures: influence of formulation parameters. , 2002, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[4]  M. Nakagawa,et al.  Pharmacokinetic and Pharmacodynamic Differences between Ocular and Nasal Instillation of Carteolol on Intraocular Pressure and Heart Rate in Japanese Men with High CYP2D6 Activity , 2002, Journal of clinical pharmacology.

[5]  Indu Pal Kaur,et al.  Ocular Preparations: The Formulation Approach , 2002, Drug development and industrial pharmacy.

[6]  G. Hsiue,et al.  Poly(2-hydroxyethyl methacrylate) film as a drug delivery system for pilocarpine. , 2001, Biomaterials.

[7]  S. Burgalassi,et al.  Relevance of polymer molecular weight to the in vitro/in vivo performances of ocular inserts based on poly(ethylene oxide). , 2001, International journal of pharmaceutics.

[8]  H. Sasaki,et al.  Characterization of ocular pharmacokinetics of tilisolol after instillation into anesthetized rabbits. , 1999, Biological & pharmaceutical bulletin.

[9]  P. Sado,et al.  Ophthalmic drug delivery systems—Recent advances , 1998, Progress in Retinal and Eye Research.

[10]  H. Sasaki,et al.  In‐situ Ocular Absorption of Ophthalmic β‐Blockers through Ocular Membranes in Albino Rabbits , 1997, The Journal of pharmacy and pharmacology.

[11]  H. Sasaki,et al.  Delivery of drugs to the eye by topical application , 1996, Progress in Retinal and Eye Research.

[12]  S. Kawakami,et al.  In situ ocular absorption of tilisolol through ocular membranes in albino rabbits. , 1996, Journal of pharmaceutical sciences.

[13]  H. Sasaki,et al.  Influence of drug release rate on systemic timolol absorption from polymeric ocular inserts in the pigmented rabbit. , 1994, Journal of ocular pharmacology.

[14]  Sasaki Hitoshi,et al.  Drug release from an ophthalmic insert of a beta-blocker as an ocular drug delivery system , 1993 .

[15]  H. Sasaki,et al.  Ocular delivery of the β-blocker, tilisolol, through the prodrug approach , 1993 .

[16]  J. C. Keister,et al.  Limits on optimizing ocular drug delivery. , 1991, Journal of pharmaceutical sciences.

[17]  R. Schoenwald Ocular drug delivery. Pharmacokinetic considerations. , 1990, Clinical pharmacokinetics.

[18]  T. F. Patton,et al.  Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption , 1987 .

[19]  T. F. Patton,et al.  Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. , 1987, Journal of pharmaceutical sciences.

[20]  S. Imai,et al.  Pharmacological profile of a new beta-adrenoceptor blocker, 4-[3-(tert-butylamino)-2-hydroxypropoxy]-N-methylisocarbostyril hydrochloride (N-696). , 1984, Arzneimittel-Forschung.

[21]  M. Doane,et al.  Penetration routes of topically applied eye medications. , 1978, American journal of ophthalmology.