FEPR: fast energy projection for real-time simulation of deformable objects

We propose a novel projection scheme that corrects energy fluctuations in simulations of deformable objects, thereby removing unwanted numerical dissipation and numerical "explosions". The key idea of our method is to first take a step using a conventional integrator, then project the result back to the constant energy-momentum manifold. We implement this strategy using fast projection, which only adds a small amount of overhead to existing physics-based solvers. We test our method with several implicit integration rules and demonstrate its benefits when used in conjunction with Position Based Dynamics and Projective Dynamics. When added to a dissipative integrator such as backward Euler, our method corrects the artificial damping and thus produces more vivid motion. Our projection scheme also effectively prevents instabilities that can arise due to approximate solves or large time steps. Our method is fast, stable, and easy to implement---traits that make it well-suited for real-time physics applications such as games or training simulators.

[1]  Ladislav Kavan,et al.  Stabilizing Integrators for Real-Time Physics , 2018, ACM Trans. Graph..

[2]  W. Straßer,et al.  Magnets in motion , 2008, SIGGRAPH 2008.

[3]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[4]  Michael Ortiz,et al.  A note on energy conservation and stability of nonlinear time-stepping algorithms , 1986 .

[5]  E. Celledoni Lie group methods , 2009 .

[6]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[7]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[8]  Robert D. Skeel,et al.  Monitoring energy drift with shadow Hamiltonians , 2005 .

[9]  Marco Fratarcangeli,et al.  Vivace: a practical gauss-seidel method for stable soft body dynamics , 2016, ACM Trans. Graph..

[10]  Eitan Grinspun,et al.  Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..

[11]  Kenny Erleben,et al.  Constraint reordering for iterative multi-body simulation with contact , 2017 .

[12]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[13]  Bernd Eberhardt,et al.  Implicit-Explicit Schemes for Fast Animation with Particle Systems , 2000, Computer Animation and Simulation.

[14]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[15]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[16]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[17]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[18]  Mayya Tokman,et al.  A stiffly accurate integrator for elastodynamic problems , 2017, ACM Trans. Graph..

[19]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[20]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[21]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[22]  Wolfgang Straßer,et al.  Asynchronous Cloth Simulation , 2008 .

[23]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[24]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[25]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[26]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[27]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[28]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[29]  E. Hairer Long-time energy conservation of numerical integrators , 2006 .

[30]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, ACM Trans. Graph..

[31]  Nadia Magnenat-Thalmann,et al.  Implicit midpoint integration and adaptive damping for efficient cloth simulation , 2005, Comput. Animat. Virtual Worlds.

[32]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[33]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[34]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[35]  Florica Moldoveanu,et al.  Position based simulation of solids with accurate contact handling , 2017, Comput. Graph..

[36]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[37]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[38]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[39]  Keenan Crane,et al.  Lie group integrators for animation and control of vehicles , 2009, TOGS.

[40]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[41]  Eitan Grinspun,et al.  Speculative parallel asynchronous contact mechanics , 2012, ACM Trans. Graph..

[42]  Dinesh K. Pai,et al.  Exponential Rosenbrock-Euler Integrators for Elastodynamic Simulation , 2018, IEEE Transactions on Visualization and Computer Graphics.

[43]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[44]  Zhiyong Yuan,et al.  A novel unconditionally stable explicit integration method for finite element method , 2018, The Visual Computer.

[45]  Thomas J. R. Hughes,et al.  FINITE-ELEMENT METHODS FOR NONLINEAR ELASTODYNAMICS WHICH CONSERVE ENERGY. , 1978 .

[46]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[47]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[48]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Ronald Fedkiw,et al.  Energy Conservation for the Simulation of Deformable Bodies , 2012 .

[50]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[51]  Matthias Harders,et al.  Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects , 2011, SCA '11.

[52]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[53]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[54]  Jun J Pan,et al.  Real‐time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[55]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[56]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[57]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[58]  Ekkehard Ramm,et al.  Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells , 1996 .

[59]  Nadia Magnenat-Thalmann,et al.  Implicit midpoint integration and adaptive damping for efficient cloth simulation: Collision Detection and Deformable Objects , 2005 .

[60]  Ronald Fedkiw,et al.  Inequality cloth , 2017, Symposium on Computer Animation.

[61]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[62]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[63]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[64]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .