Molecular Criteria for Defining the Naive Human Pluripotent State

[1]  Rickard Sandberg,et al.  Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos , 2016, Cell.

[2]  William A. Pastor,et al.  Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory. , 2016, Cell stem cell.

[3]  R. Jaenisch,et al.  Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos , 2016, Proceedings of the National Academy of Sciences.

[4]  R. Pedersen,et al.  Human-Mouse Chimerism Validates Human Stem Cell Pluripotency , 2016, Cell stem cell.

[5]  D. Trono,et al.  The developmental control of transposable elements and the evolution of higher species. , 2015, Annual review of cell and developmental biology.

[6]  J. Nichols,et al.  Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis , 2015, Developmental cell.

[7]  J. I. Izpisúa Belmonte,et al.  Dynamic Pluripotent Stem Cell States and Their Applications. , 2015, Cell stem cell.

[8]  G. Daley,et al.  Hallmarks of pluripotency , 2015, Nature.

[9]  P. Robson,et al.  Defining the three cell lineages of the human blastocyst by single-cell RNA-seq , 2015, Mechanisms of Development.

[10]  Juan Carlos Izpisua Belmonte,et al.  An alternative pluripotent state confers interspecies chimaeric competency , 2015, Nature.

[11]  F. Dilworth,et al.  A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation , 2015, Genes & development.

[12]  Robert J. Schmitz,et al.  MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing , 2015, Nature Protocols.

[13]  L. Hurst,et al.  Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells , 2014, Nature.

[14]  G. Fan,et al.  The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. , 2014, Cell stem cell.

[15]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[16]  Xiang Li,et al.  Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. , 2014, Cell stem cell.

[17]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[18]  F. Tang,et al.  The DNA methylation landscape of human early embryos , 2014, Nature.

[19]  W. Reik,et al.  Reprogramming the Methylome: Erasing Memory and Creating Diversity , 2014, Cell stem cell.

[20]  D. Trono,et al.  Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements , 2014, Genome research.

[21]  J. Nichols,et al.  The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification , 2014, Nature Cell Biology.

[22]  Julie V. Harness,et al.  Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment , 2014, Genome research.

[23]  Angelique M. Nelson,et al.  Derivation of naïve human embryonic stem cells , 2014, Proceedings of the National Academy of Sciences.

[24]  H. Ng,et al.  Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. , 2013, Cell stem cell.

[25]  I. Amit,et al.  Derivation of novel human ground state naive pluripotent stem cells , 2013, Nature.

[26]  Ruiqiang Li,et al.  Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[27]  J. Nichols,et al.  Human hypoblast formation is not dependent on FGF signalling , 2012, Developmental biology.

[28]  D. Trono,et al.  In Embryonic Stem Cells, ZFP57/KAP1 Recognize a Methylated Hexanucleotide to Affect Chromatin and DNA Methylation of Imprinting Control Regions , 2011, Molecular cell.

[29]  J. de Vos,et al.  Dissecting the First Transcriptional Divergence During Human Embryonic Development , 2011, Stem Cell Reviews and Reports.

[30]  Peggy J. Farnham,et al.  KAP1 Protein: An Enigmatic Master Regulator of the Genome* , 2011, The Journal of Biological Chemistry.

[31]  E. Heard,et al.  Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development , 2011, Nature.

[32]  Tomoyuki Yamaguchi,et al.  Generation of Rat Pancreas in Mouse by Interspecific Blastocyst Injection of Pluripotent Stem Cells , 2010, Cell.

[33]  H. Kazazian,et al.  SVA retrotransposons: Evolution and genetic instability. , 2010, Seminars in cancer biology.

[34]  H. Kimura,et al.  Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET , 2010, Nature.

[35]  Helen M. Rowe,et al.  KAP1 controls endogenous retroviruses in embryonic stem cells , 2010, Nature.

[36]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[37]  J. Nichols,et al.  Naive and primed pluripotent states. , 2009, Cell stem cell.

[38]  Malkiel A. Cohen,et al.  Neural Differentiation of Human ES Cells , 2007, Current protocols in cell biology.

[39]  Michael B. Stadler,et al.  Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome , 2007, Nature Genetics.

[40]  R. Jaenisch,et al.  Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. , 1996, Genes & development.