Extraction of Urban Impervious Surface Using Two-Season WorldView-2 Images: A Comparison

[1]  Giorgos Mountrakis,et al.  Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification , 2014 .

[2]  Stephen V. Stehman,et al.  Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes , 2014 .

[3]  M. S. Moran,et al.  Mapping Impervious Surfaces Using Object-oriented Classification in a Semiarid Urban Region , 2014 .

[4]  C. Hladik,et al.  Salt Marsh Elevation and Habitat Mapping Using Hyperspectral and LIDAR Data , 2013 .

[5]  S. Stehman Estimating area from an accuracy assessment error matrix , 2013 .

[6]  Xuezhi Feng,et al.  Impervious surface extraction from high-resolution satellite image using pixel- and object-based hybrid analysis , 2013 .

[7]  C. Woodcock,et al.  Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation , 2013 .

[8]  Junhu Dai,et al.  Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years: Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years , 2013 .

[9]  Hanqiu Xu,et al.  Rule-based impervious surface mapping using high spatial resolution imagery , 2013 .

[10]  R. Pu,et al.  A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species , 2012 .

[11]  Bo Zhou,et al.  apping and analyzing change of impervious surface for two decades using ulti-temporal Landsat imagery in Missouri , 2012 .

[12]  Qihao Weng,et al.  Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends , 2012 .

[13]  Geoffrey J. Hay,et al.  How wetland type and area differ through scale: A GEOBIA case study in Alberta's Boreal Plains , 2012 .

[14]  Ming-Han Li,et al.  Considering plant phenology for improving the accuracy of urban impervious surface mapping in a subtropical climate regions , 2012 .

[15]  仲舒颖,et al.  Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years , 2012 .

[16]  Uwe Stilla,et al.  Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification , 2011, Remote. Sens..

[17]  R. Pontius,et al.  Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment , 2011 .

[18]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[19]  Dengsheng Lu,et al.  Impervious surface mapping with Quickbird imagery , 2011, International journal of remote sensing.

[20]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[21]  Peijun Li,et al.  A Multilevel Hierarchical Image Segmentation Method for Urban Impervious Surface Mapping Using Very High Resolution Imagery , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Xuefei Hu,et al.  Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method , 2011 .

[23]  Xuefei Hu,et al.  Estimation of impervious surfaces of Beijing, China, with spectral normalized images using linear spectral mixture analysis and artificial neural network , 2010, Geocarto International.

[24]  Jaeyoung Yoon,et al.  Effects of land use change and water reuse options on urban water cycle. , 2010, Journal of environmental sciences.

[25]  S. Linden,et al.  The influence of urban structures on impervious surface maps from airborne hyperspectral data. , 2009 .

[26]  Xuefei Hu,et al.  Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. , 2009 .

[27]  Xuefei Hu,et al.  Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images , 2009 .

[28]  Austin Troy,et al.  Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study , 2009 .

[29]  Changshan Wu,et al.  Quantifying high‐resolution impervious surfaces using spectral mixture analysis , 2009 .

[30]  D. Lu,et al.  Extraction of urban impervious surfaces from an IKONOS image , 2009 .

[31]  Hongbing Luo,et al.  Total pollution effect of urban surface runoff. , 2009, Journal of environmental sciences.

[32]  Q. Ge,et al.  [Dynamics of autumn phenophase of woody plants in Beijing region in 1962-2007]. , 2008, Ying yong sheng tai xue bao = The journal of applied ecology.

[33]  Qihao Weng,et al.  Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Changshan Wu,et al.  Seasonal Sensitivity Analysis of Impervious Surface Estimation with Satellite Imagery , 2007 .

[35]  Peijun Li,et al.  Multispectral image segmentation by a multichannel watershed‐based approach , 2007 .

[36]  C. Yang,et al.  Canopy Spectra and Remote Sensing of Ashe Juniper and Associated Vegetation , 2007, Environmental monitoring and assessment.

[37]  Alan T. Murray,et al.  Population Estimation Using Landsat Enhanced Thematic Mapper Imagery , 2007 .

[38]  Rusong Wang,et al.  Monitoring and predicting land use change in Beijing using remote sensing and GIS , 2006 .

[39]  D. Lu,et al.  Residential population estimation using a remote sensing derived impervious surface approach , 2006 .

[40]  Sangbum Lee,et al.  Subpixel analysis of Landsat ETM/sup +/ using self-organizing map (SOM) neural networks for urban land cover characterization , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  D. Lu,et al.  Use of impervious surface in urban land-use classification , 2006 .

[42]  M. D. White,et al.  The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California , 2006 .

[43]  P. Dare Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas , 2005 .

[44]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[45]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  D. Lu,et al.  Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies , 2004 .

[47]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[48]  C. Small High spatial resolution spectral mixture analysis of urban reflectance , 2003 .

[49]  Curt H. Davis,et al.  A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[50]  Alan T. Murray,et al.  Estimating impervious surface distribution by spectral mixture analysis , 2003 .

[51]  T. Minor,et al.  Detecting and discriminating impervious cover with high-resolution IKONOS data using principal component analysis and morphological operators , 2003 .

[52]  Alan T. Murray,et al.  Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques , 2002 .

[53]  E. Terrence Slonecker,et al.  Remote sensing of impervious surfaces: A review , 2001 .

[54]  Sachio Kubo,et al.  Appraising the anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through remote sensing , 2001 .

[55]  Stephen V. Stehman,et al.  Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment , 2000 .

[56]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[57]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[58]  Sharon L. Lohr,et al.  Sampling: Design and Analysis , 1999 .

[59]  J. R. Jensen,et al.  Effectiveness of Subpixel Analysis in Detecting and Quantifying Urban Imperviousness from Landsat Thematic Mapper Imagery , 1999 .

[60]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[61]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  C. Arnold,et al.  IMPERVIOUS SURFACE COVERAGE: THE EMERGENCE OF A KEY ENVIRONMENTAL INDICATOR , 1996 .

[63]  R. Blair Land Use and Avian Species Diversity Along an Urban Gradient , 1996 .

[64]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[65]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .