Temperature stable and fatigue resistant lead-free ceramics for actuators

Lead-free ceramics with the composition 0.91K1/2Bi1/2TiO3–0.09(0.82BiFeO3-0.15NdFeO3-0.03Nd2/3TiO3) were prepared using a conventional solid state, mixed oxide route. The ceramics exhibited a high strain of 0.16% at 6 kV mm−1, stable from room temperature to 175 °C, with a variation of <10%. The materials were fabricated into multilayer structures by co-firing with Pt internal electrodes. The prototype multilayer actuator exhibited constant strains up to 300 °C with a variation of ∼15%. The composition showed fatigue resistant behaviour in both monolithic and multilayer form after bipolar loading of 106 cycles.

[1]  D. Sinclair,et al.  Phase transitions, domain structure, and pseudosymmetry in La- and Ti-doped BiFeO3 , 2016 .

[2]  T. Stevenson,et al.  Piezoelectric materials for high temperature transducers and actuators , 2015, Journal of Materials Science: Materials in Electronics.

[3]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[4]  J. Rödel,et al.  Bi(Me)O3–PbTiO3 high TC piezoelectric multilayers , 2013 .

[5]  T. Grande,et al.  Polarization and strain response in Bi0.5K0.5TiO3-BiFeO3 ceramics , 2012 .

[6]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[7]  T. Grande,et al.  Lead-Free Relaxor-Like 0.75Bi0.5K0.5TiO3 – 0.25BiFeO3 Ceramics with Large Electric Field-Induced Strain , 2012 .

[8]  D. Sinclair,et al.  Ti‐Doping to Reduce Conductivity in Bi0.85Nd0.15FeO3 Ceramics , 2011 .

[9]  Y. Noguchi,et al.  Structural and piezoelectric properties of high-density (Bi0.5K0.5)TiO3–BiFeO3 ceramics , 2010 .

[10]  J. Cho,et al.  Piezoelectric and Dielectric Properties of Lead-Free (1-x)(Bi0.5K0.5)TiO3-xBiFeO3 Ceramics , 2010 .

[11]  Dragan Damjanovic,et al.  WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? , 2010 .

[12]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[13]  D. Arnold,et al.  Ferroelectric-Paraelectric Transition inBiFeO3: Crystal Structure of the OrthorhombicβPhase , 2008, 0811.1501.

[14]  C. Galassi Piezoelectric Materials: Advances in Science, Technology and Applications , 2008 .

[15]  A. Safari,et al.  Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics , 2008 .

[16]  Helmut Ehrenberg,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties , 2008 .

[17]  Hui Yan,et al.  Relaxor behavior of (K0.5Bi0.5)TiO3 ceramics derived from molten salt synthesized single-crystalline nanowires , 2007 .

[18]  J. Rödel,et al.  Fatigue of Lead Zirconate Titanate Ceramics. I: Unipolar and DC Loading , 2007 .

[19]  N. Setter,et al.  Temperature stability of the piezoelectric properties of Li-modified KNN ceramics , 2007 .

[20]  Hajime Nagata,et al.  Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics , 2005 .

[21]  M. Blamire,et al.  Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 , 2005 .

[22]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[23]  J. Li,et al.  Dielectric relaxor properties of K0.5Bi0.5TiO3 ferroelectrics prepared by sol-gel method , 2003 .

[24]  Roland Müller-Fiedler,et al.  Reliability aspects of microsensors and micromechatronic actuators for automotive applications , 2003, Microelectron. Reliab..

[25]  J. Rödel,et al.  Mixed electromechanical fatigue in lead zirconate titanate , 2003 .

[26]  J. Rödel,et al.  Stability of defects in lead–zirconate–titanate after unipolar fatigue , 2002 .

[27]  Y. Fotinich,et al.  Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics , 1998 .

[28]  K. Uchino,et al.  Electrostrictive Coefficients of Pb(Mg1/3Nb2/3)O3 Ceramics , 1980 .