ZnO nanofiber skeleton induced robust zeolitic imidazolate framework membranes for gas separation

[1]  Yanwei Sun,et al.  Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source , 2022, Journal of Membrane Science.

[2]  H. Erfan-Niya,et al.  Separation of H2/CH4 gas mixture through graphenylene membrane with functionalized nanopore: A computational study , 2022, International Journal of Hydrogen Energy.

[3]  Jianzhong Xu,et al.  Designing heterogeneous MOF-on-MOF membrane with hierarchical pores for effective water treatment , 2022, Journal of Membrane Science.

[4]  H. Ahmadi,et al.  A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film , 2022, Desalination.

[5]  Shaomin Liu,et al.  ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures , 2022, Journal of Membrane Science.

[6]  Qiang Sun,et al.  Directional separation of hydrogen-containing gas mixture by hydrate-membrane coupling method , 2022, International Journal of Hydrogen Energy.

[7]  C. Téllez,et al.  Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes , 2022, Journal of Membrane Science.

[8]  F. Gallucci,et al.  Effect of aluminium acetyl acetonate on the hydrogen and nitrogen permeation of carbon molecular sieves membranes , 2022, International Journal of Hydrogen Energy.

[9]  Z. Lai,et al.  Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation , 2022, Science advances.

[10]  Changchang Ma,et al.  Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts , 2022, Journal of Membrane Science.

[11]  Chuyang Y. Tang,et al.  Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport , 2022, Nature communications.

[12]  V. L. Cardoso,et al.  Enhanced hydrogen permeance through graphene oxide membrane deposited on asymmetric spinel hollow fiber substrate , 2022, International Journal of Hydrogen Energy.

[13]  M. Zheng,et al.  Hetero‐lattice intergrown and robust MOF membranes for polyol upgrading , 2021, Angewandte Chemie.

[14]  Z. Lai,et al.  Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges , 2021 .

[15]  Tai‐Shung Chung,et al.  Supramolecular Polymer Network Membranes with Molecular-Sieving Nanocavities for Efficient Pre-Combustion CO2 Capture. , 2021, Small methods.

[16]  X. Tan,et al.  A dual-layer ZnO–Al2O3 hollow fiber for directly inducing the formation of ZIF membrane , 2021, Journal of Membrane Science.

[17]  Haiyun Ma,et al.  A Highly Permeable Mixed Matrix Membrane Containing a Vertically Aligned Metal-Organic Framework for CO2 Separation. , 2021, ACS applied materials & interfaces.

[18]  M. Agarwal,et al.  Advances in materials process and separation mechanism of the membrane towards hydrogen separation , 2021, International Journal of Hydrogen Energy.

[19]  J. Yu,et al.  A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater , 2020 .

[20]  Shing Bo Peh,et al.  Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. , 2020, Journal of the American Chemical Society.

[21]  A. Huang,et al.  Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation , 2020 .

[22]  Yujia Li,et al.  Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation , 2019, Journal of Membrane Science.

[23]  Hua Jin,et al.  Preparation and pervaporation performance of CAU-10-H MOF membranes , 2019, Journal of Membrane Science.

[24]  D. Parra,et al.  A review on the role, cost and value of hydrogen energy systems for deep decarbonisation , 2019, Renewable and Sustainable Energy Reviews.

[25]  Yujia Li,et al.  ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H2 Separation. , 2018, ACS applied materials & interfaces.

[26]  Haihui Wang,et al.  Self-Sacrificial Template Strategy Coupled with Smart in Situ Seeding for Highly Oriented Metal–Organic Framework Layers: From Films to Membranes , 2017 .

[27]  C. Téllez,et al.  Structural Contraction of Zeolitic Imidazolate Frameworks: Membrane Application on Porous Metallic Hollow Fibers for Gas Separation. , 2017, ACS applied materials & interfaces.

[28]  C. Téllez,et al.  On the molecular mechanisms for the H2/CO2 separation performance of zeolite imidazolate framework two-layered membranes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02411d Click here for additional data file. , 2016, Chemical science.

[29]  Naixin Wang,et al.  Oriented Nano–Microstructure‐Assisted Controllable Fabrication of Metal–Organic Framework Membranes on Nickel Foam , 2016, Advanced materials.

[30]  B. Weckhuysen,et al.  Controlled Synthesis of Phase‐Pure Zeolitic Imidazolate Framework Co‐ZIF‐9 , 2015 .

[31]  Chongli Zhong,et al.  Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2-CH4 mixture. , 2015, Chemical communications.

[32]  N. Casati,et al.  Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability. , 2015, Dalton transactions.

[33]  J. Caro,et al.  In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. , 2014, Journal of the American Chemical Society.

[34]  Guojun Zhang,et al.  Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. , 2014, Angewandte Chemie.

[35]  Shaohui Li,et al.  New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation , 2014 .

[36]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[37]  Hern Kim,et al.  Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst , 2012 .

[38]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[39]  G. Garberoglio,et al.  Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation , 2011 .

[40]  W. Shen,et al.  A Facile Chemical Conversion Synthesis of ZnO/ZnS Core/Shell Nanorods and Diverse Metal Sulfide Nanotubes , 2011 .

[41]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[42]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[43]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[44]  L. Robeson,et al.  The upper bound revisited , 2008 .

[45]  T. Nenoff,et al.  Membranes for hydrogen separation. , 2007, Chemical reviews.

[46]  Pratibha Pandey,et al.  Membranes for gas separation , 2001 .