fMRI models of dendritic and astrocytic networks.

In order to elucidate the relationships between hierarchical structures within the neocortical neuropil and the information carried by an ensemble of neurons encompassing a single voxel, it is essential to predict through volume conductor modeling LFPs representing average extracellular potentials, which are expressed in terms of interstitial potentials of individual cells in networks of gap-junctionally connected astrocytes and synaptically connected neurons. These relationships have been provided and can then be used to investigate how the underlying neuronal population activity can be inferred from the measurement of the BOLD signal through electrovascular coupling mechanisms across the blood-brain barrier. The importance of both synaptic and extrasynaptic transmission as the basis of electrophysiological indices triggering vascular responses between dendritic and astrocytic networks, and sequential configurations of firing patterns in composite neural networks is emphasized. The purpose of this review is to show how fMRI data may be used to draw conclusions about the information transmitted by individual neurons in populations generating the BOLD signal.

[1]  N. Harel,et al.  Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. , 2002, Cerebral cortex.

[2]  Isaac Meilijson,et al.  Distributed synchrony in a cell assembly of spiking neurons , 2001, Neural Networks.

[3]  F. T. Husain,et al.  Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study , 2004, NeuroImage.

[4]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[5]  Walter Senn,et al.  Beyond spike timing: the role of nonlinear plasticity and unreliable synapses , 2002, Biological Cybernetics.

[6]  Wulfram Gerstner,et al.  A biologically motivated and analytically soluble model of collective oscillations in the cortex , 1993, Biological Cybernetics.

[7]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[8]  Thomas Wennekers,et al.  Models of distributed associative memory networks in the brain , 2003, Theory in biosciences.

[9]  Kenneth R. Jackson,et al.  Rigorous high-dimensional shadowing using containment: The general case , 2005 .

[10]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[11]  W A Wickelgren,et al.  Webs, cell assemblies, and chunking in neural nets: introduction. , 1999, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[12]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[13]  F Ventriglia,et al.  Kinetic approach to neural systems. , 1974, The International journal of neuroscience.

[14]  A. Dale,et al.  Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex , 2003, Neuron.

[15]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[16]  Karl J. Friston Imaging cognitive anatomy , 1997, Trends in Cognitive Sciences.

[17]  A. Aubert,et al.  Interaction between Astrocytes and Neurons Studied using a Mathematical Model of Compartmentalized Energy Metabolism , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[19]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[20]  Luigi F. Agnati,et al.  The emergence of the volume transmission concept 1 Published on the World Wide Web on 12 January 1998. 1 , 1998, Brain Research Reviews.

[21]  Lawrence Sirovich,et al.  On the Simulation of Large Populations of Neurons , 2004, Journal of Computational Neuroscience.

[22]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[23]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[24]  R. Haddock,et al.  Rhythmicity in arterial smooth muscle , 2005, The Journal of physiology.

[25]  Roman R Poznanski,et al.  Towards an integrative theory of cognition. , 2002, Journal of integrative neuroscience.

[26]  Makoto Takahashi,et al.  The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism , 2006, NeuroImage.

[27]  R Kawashima,et al.  Nonlinear local electrovascular coupling. II: From data to neuronal masses , 2007, Human brain mapping.

[28]  J. C. Jimenez,et al.  Nonlinear local electrovascular coupling. I: A theoretical model , 2006, Human brain mapping.

[29]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[30]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[31]  Jean-François Vibert,et al.  Self-oscillatory dynamics in recurrent excitatory networks , 2002, Neurocomputing.

[32]  Tim P Vogels,et al.  Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons , 2005, The Journal of Neuroscience.

[33]  Sean L. Hill,et al.  Modeling the effects of transcranial magnetic stimulation on cortical circuits. , 2005, Journal of neurophysiology.

[34]  Karl J. Friston,et al.  Hemodynamic correlates of EEG: A heuristic , 2005, NeuroImage.

[35]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[36]  James A. Anderson,et al.  Computational and Neurobiological Features of a Network of Networks , 1995 .

[37]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[38]  W Singer,et al.  Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. , 1977, Journal of neurophysiology.

[39]  W. Freeman,et al.  Brain Dynamics: Brain Chaos and Intentionality , 2000 .

[40]  W. Freeman The wave packet: an action potential for the 21st century. , 2003, Journal of integrative neuroscience.

[41]  G. Chauvet Theoretical systems in biology : hierarchial and functional integration , 1995 .

[42]  A. Dale,et al.  Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[44]  P. Peretto,et al.  Collective properties of neural networks: A statistical physics approach , 2004, Biological Cybernetics.

[45]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[46]  Jason Berwick,et al.  Further nonlinearities in neurovascular coupling in rodent barrel cortex , 2005, NeuroImage.

[47]  R R Poznanski,et al.  Theoretical analysis of the amplification of synaptic potentials by small clusters of persistent sodium channels in dendrites. , 2000, Mathematical biosciences.

[48]  Erik De Schutter,et al.  A large-scale model of the cerebellar cortex using PGENESIS , 2000, Neurocomputing.

[49]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[50]  Peter Redgrave,et al.  Nonlinear coupling of neural activity and CBF in rodent barrel cortex , 2004, NeuroImage.

[51]  Barry Horwitz,et al.  Modeling brain imaging data with neuronal assembly dynamics , 1997 .

[52]  Stiliyan Kalitzin,et al.  Coherency and connectivity in oscillating neural networks: linear partialization analysis , 1997, Biological Cybernetics.

[53]  A. Aertsen,et al.  Neuronal assemblies , 1989, IEEE Transactions on Biomedical Engineering.

[54]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[55]  C. Iadecola,et al.  Intrinsic signals and functional brain mapping: caution, blood vessels at work. , 2002, Cerebral cortex.

[56]  Martin Lauritzen,et al.  Context sensitivity of activity-dependent increases in cerebral blood flow , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[58]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[59]  J Riera,et al.  Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[61]  L. Kaufman,et al.  Study of human occipital alpha rhythm: the alphon hypothesis and alpha suppression. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[62]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[63]  F. Hyder,et al.  Total neuroenergetics support localized brain activity: Implications for the interpretation of fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  V. Braitenberg Cell Assemblies in the Cerebral Cortex , 1978 .

[65]  R. Koehler,et al.  Role of astrocytes in cerebrovascular regulation. , 2006, Journal of applied physiology.

[66]  Manbir Singh,et al.  Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans , 2003, Magnetic resonance in medicine.

[67]  T. Bullock,et al.  Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[69]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[70]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[71]  Xiao-Jing Wang,et al.  Mean-Field Theory of Irregularly Spiking Neuronal Populations and Working Memory in Recurrent Cortical Networks , 2003 .

[72]  Nikos K. Logothetis,et al.  Functional magnetic resonance imaging adaptation: a technique for studying the properties of neuronal networks , 2003 .

[73]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[74]  José Luis Contreras-Vidal,et al.  A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement , 1995, Biological Cybernetics.

[75]  H C Kwan,et al.  A basis for extracellular current density analysis in cerebellar cortex. , 1974, Journal of neurophysiology.

[76]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Crelier,et al.  Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model , 1999, Magnetic resonance in medicine.

[78]  Paul Bach-Y-Rita,et al.  Emerging concepts of brain function. , 2005, Journal of integrative neuroscience.

[79]  J. Filosa,et al.  Calcium Dynamics in Cortical Astrocytes and Arterioles During Neurovascular Coupling , 2004, Circulation research.

[80]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[81]  Wulfram Gerstner,et al.  Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns , 1993, Biological Cybernetics.

[82]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[83]  P Cerretelli,et al.  Muscle O(2) consumption by NIRS: a theoretical model. , 1999, Journal of applied physiology.

[84]  R. Fields,et al.  New insights into neuron-glia communication. , 2002, Science.

[85]  F. Hyder,et al.  Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Anders Lansner,et al.  Improving the Realism of Attractor Models By using Cortical Columns as Functional Units , 1995 .

[87]  P. Husbands,et al.  Modeling Cooperative Volume Signaling in a Plexus of Nitric Oxide Synthase-Expressing Neurons , 2005, The Journal of Neuroscience.

[88]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[89]  Roman R. Poznanski,et al.  Biophysical neural networks : foundations of integrative neuroscience , 2001 .

[90]  S Vanhatalo,et al.  Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain , 2003, Clinical Neurophysiology.

[91]  Friedrich T. Sommer,et al.  Coexistence of short and long term memory in a model network of realistic neurons , 2001, Neurocomputing.

[92]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[93]  O B Paulson,et al.  Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? , 1987, Science.

[94]  Piotr J. Franaszczuk,et al.  A simple computer model of excitable synaptically connected neurons , 1997, Biological Cybernetics.

[95]  Sergio Fantini,et al.  A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin. , 2002, Physics in medicine and biology.

[96]  P. Robinson,et al.  Multiscale brain modelling , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[97]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[98]  Luigi F. Agnati,et al.  Volume transmission in the brain. Novel mechanisms for neural transmission Edited by K. Fuxe and L.F. Agnati, Advances in neuroscience vol. 1, Raven Press, New York, 1991, 602 pp., US$ 130,- , 1992, Neuroscience Letters.

[99]  P. J. Jennings,et al.  Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging , 1997, Human brain mapping.

[100]  Ulrich Dirnagl,et al.  Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. , 1999, American journal of physiology. Heart and circulatory physiology.

[101]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[102]  W Rall,et al.  Computed potentials of cortically arranged populations of neurons. , 1977, Journal of neurophysiology.

[103]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[104]  J. Holsheimer,et al.  The double dipole model of theta rhythm generation: Simulation of laminar field potential profiles in dorsal hippocampus of the rat , 1982, Brain Research.

[105]  Christian Giaume,et al.  Control of gap-junctional communication in astrocytic networks , 1996, Trends in Neurosciences.

[106]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[107]  Hatsuo Hayashi,et al.  Complexity of spatiotemporal activity of a neural network model which depends on the degree of synchronization , 1998, Neural Networks.

[108]  Martin Stetter,et al.  Modeling the Link between Functional Imaging and Neuronal Activity: Synaptic Metabolic Demand and Spike Rates , 2002, NeuroImage.

[109]  Olaf Sporns,et al.  Principles and Methods in the Analysis of Brain Networks , 2005 .

[110]  Nicholas T. Carnevale,et al.  Hebbian learning is jointly controlled by electrotonic and input structure , 1994 .

[111]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[112]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[113]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[114]  Rolf Kötter,et al.  Multi-Level Neuron and Network Modeling in Computational Neuroanatomy , 2002 .

[115]  J. Cowan,et al.  Large Scale Spatially Organized Activity in Neural Nets , 1980 .

[116]  Daniel J. Amit,et al.  E ective neurons and attractor neural networks in cortical environment , 1992 .

[117]  Robert G. Shulman,et al.  Energy on Demand , 1999, Science.

[118]  Suhita Nadkarni,et al.  Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. , 2005, Journal of integrative neuroscience.

[119]  Barry Horwitz,et al.  Interpreting PET and fMRI measures of functional neural activity: the effects of synaptic inhibition on cortical activation in human imaging studies , 2001, Brain Research Bulletin.

[120]  Hanspeter A. Mallot,et al.  Population networks: a large-scale framework for modelling cortical neural networks , 1996, Biological Cybernetics.

[121]  Bruce J. MacLennan Information Processing in the Dendritic Net , 1992 .

[122]  R. L. Beurle Properties of a mass of cells capable of regenerating pulses , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[123]  P. Magistretti,et al.  Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[124]  G. Edelman,et al.  Spike-timing dynamics of neuronal groups. , 2004, Cerebral cortex.

[125]  Xianhong Xie,et al.  Optimal spline smoothing of fMRI time series by generalized cross-validation , 2003, NeuroImage.

[126]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[127]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[128]  A. Rotterdam,et al.  A computer system for the analysis and synthesis of field potentials , 1980, Biological Cybernetics.

[129]  M. Fuchs,et al.  An improved boundary element method for realistic volume-conductor modeling , 1998, IEEE Transactions on Biomedical Engineering.

[130]  Daniel Lehmann,et al.  Modeling Compositionality by Dynamic Binding of Synfire Chains , 2004, Journal of Computational Neuroscience.

[131]  Mathew P. Dafilis,et al.  A spatially continuous mean field theory of electrocortical activity , 2002, Network.

[132]  J M Bekkers,et al.  Distribution and activation of voltage‐gated potassium channels in cell‐attached and outside‐out patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[133]  Tohru Ozaki,et al.  fMRI activation maps based on the NN-ARx model , 2004, NeuroImage.

[134]  M. Posner,et al.  Localization of cognitive operations in the human brain. , 1988, Science.

[135]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[136]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[137]  Barry Horwitz,et al.  Relating fMRI and PET signals to neural activity by means of large-scale neural models , 2007, Neuroinformatics.

[138]  A. Rodríguez-Baeza,et al.  Perivascular structures in corrosion casts of the human central nervous system: A confocal laser and scanning electron microscope study , 1998, The Anatomical record.

[139]  Anders Lansner,et al.  Biophysically detailed modelling of microcircuits and beyond , 2005, Trends in Neurosciences.

[140]  Barry Horwitz,et al.  Integrating neuroscientific data across spatiotemporal scales. , 2005, Comptes rendus biologies.

[141]  P. Bach-y-Rita Nonsynaptic Diffusion Neurotransmission and Late Brain Reorganization , 1995 .

[142]  Thomas Wennekers,et al.  Dynamics of spatio-temporal patterns in associative networks of spiking neurons , 2000, Neurocomputing.

[143]  Henry C. Tuckwell,et al.  Cortical Potential Distributions and Information Processing , 2000, Neural Computation.

[144]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[145]  A. Destexhe Stability of periodic oscillations in a network of neurons with time delay , 1994 .

[146]  R. Plonsey,et al.  The extracellular potential field of the single active nerve fiber in a volume conductor. , 1968, Biophysical journal.

[147]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[148]  John H. Byrne,et al.  Mathematical Model of Cellular and Molecular Processes Contributing to Associative and Nonassociative Learning in Aplysia , 1989 .

[149]  Marjan Zaletel,et al.  The relationship between visually evoked cerebral blood flow velocity responses and visual-evoked potentials , 2004, NeuroImage.

[150]  R. Buckner,et al.  Human Brain Mapping 6:373–377(1998) � Event-Related fMRI and the Hemodynamic Response , 2022 .

[151]  Pierre J. Magistretti,et al.  Let There Be (NADH) Light , 2004, Science.

[152]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[153]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[154]  Ronald J. MacGregor,et al.  Neural and brain modeling , 1987 .

[155]  J. Griffith A field theory of neural nets. II. Properties of the field equations. , 1965, The Bulletin of mathematical biophysics.

[156]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[157]  David T. J. Liley,et al.  A continuum theory of electro-cortical activity , 1999, Neurocomputing.

[158]  Naoki Miura,et al.  A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.

[159]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[160]  J. Griffith A field theory of neural nets: I. Derivation of field equations. , 1963, The Bulletin of mathematical biophysics.

[161]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[162]  Terrence J. Sejnowski,et al.  RAPID STATE SWITCHING IN BALANCED CORTICAL NETWORK MODELS , 1995 .

[163]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[164]  Y Yonekura,et al.  Neural networks for generation and suppression of alpha rhythm: a PET study , 1998, Neuroreport.

[165]  B. Horwitz,et al.  Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. , 1998, Cerebral cortex.

[166]  E. Hamel Perivascular nerves and the regulation of cerebrovascular tone. , 2006, Journal of applied physiology.

[167]  Idan Segev,et al.  On the Transmission of Rate Code in Long Feedforward Networks with Excitatory–Inhibitory Balance , 2003, The Journal of Neuroscience.

[168]  C. Nicholson,et al.  Extracellular space structure revealed by diffusion analysis , 1998, Trends in Neurosciences.

[169]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[170]  M. Hallett,et al.  The relative metabolic demand of inhibition and excitation , 2000, Nature.

[171]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[172]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[173]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[174]  François Chapeau-Blondeau,et al.  Synapse Models for Neural Networks: From Ion Channel Kinetics to Multiplicative Coefficient wij , 1995, Neural Computation.

[175]  Jorge J. Riera,et al.  What can be Observed from Functional Neuroimaging , 2007 .

[176]  Seong-Gi Kim Progress in understanding functional imaging signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[177]  C. Nicholson,et al.  Spatial buffering of potassium ions in brain extracellular space. , 2000, Biophysical journal.

[178]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[179]  Jeffrey P. Sutton MODELING CORTICAL DISORDERS USING NESTED NETWORKS , 1996 .

[180]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[181]  H. Haken,et al.  A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics , 1997 .

[182]  R. J. MacGregor,et al.  Sequential configuration model for firing patterns in local neural networks , 1991, Biological Cybernetics.

[183]  Duane Q. Nykamp,et al.  A Population Density Approach That Facilitates Large-Scale Modeling of Neural Networks: Analysis and an Application to Orientation Tuning , 2004, Journal of Computational Neuroscience.

[184]  Peter Lipton,et al.  Do active cerebral neurons really use lactate rather than glucose? , 2001, Trends in Neurosciences.

[185]  W. Freeman Ndn, volume transmission, and self-organization in brain dynamics. , 2005, Journal of integrative neuroscience.

[186]  Daniel Lehmann,et al.  A Model for Representing the Dynamics of a System of Synfire Chains , 2005, Journal of Computational Neuroscience.

[187]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[188]  C. Napoli,et al.  Nitric oxide as a signaling molecule in the vascular system: an overview. , 1999, Journal of cardiovascular pharmacology.

[189]  Roger D. Traub,et al.  6 – Mechanisms Responsible for Epilepsy in Hippocampal Slices Predispose the Brain to Collective Oscillations , 1994 .

[190]  Luc Leybaert,et al.  Neurobarrier Coupling in the Brain: A Partner of Neurovascular and Neurometabolic Coupling? , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[191]  M. Raichle,et al.  The Effects of Changes in PaCO2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time , 1974, Stroke.

[192]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[193]  E. Rolls,et al.  What and Where in Visual Working Memory: A Computational Neurodynamical Perspective for Integrating fMRI and Single-Neuron Data , 2004, Journal of Cognitive Neuroscience.

[194]  S. Vincent,et al.  Nitric oxide: A radical neurotransmitter in the central nervous system , 1994, Progress in Neurobiology.

[195]  Christophe Bernard,et al.  Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations , 2004, Biological Cybernetics.

[196]  A. Destexhe,et al.  Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[197]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[198]  Gwen A. Jacobs,et al.  Predicting Emergent Properties of Neuronal Ensembles Using a Database of Individual Neurons , 2002 .

[199]  C. Nicholson,et al.  Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. , 1973, IEEE transactions on bio-medical engineering.

[200]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[201]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[202]  B. Feenstra,et al.  Syntheses of spinal cord field potentials in the terrapin , 2004, Biological Cybernetics.

[203]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[204]  Malcolm P. Young,,et al.  Analysis of Connectivity: Neural Systems in the Cerebral Cortex , 1994, Reviews in the neurosciences.

[205]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[206]  W. Gibson,et al.  A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. , 2005, Biophysical journal.

[207]  Karl J. Friston,et al.  Characterising the complexity of neuronal interactions , 1995 .

[208]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[209]  J. Eccles The modular operation of the cerebral neocortex considered as the material basis of mental events , 1981, Neuroscience.

[210]  Robert Miller,et al.  Neural assemblies and laminar interactions in the cerebral cortex , 1996, Biological Cybernetics.

[211]  J. Buhmann,et al.  Associative recognition and storage in a model network of physiological neurons , 1986, Biological Cybernetics.

[212]  R. Freeman,et al.  Single-Neuron Activity and Tissue Oxygenation in the Cerebral Cortex , 2003, Science.

[213]  Suhita Nadkarni,et al.  Dressed neurons: modeling neural–glial interactions , 2004, Physical biology.

[214]  W. Freeman Mass action in the nervous system : examination of the neurophysiological basis of adaptive behavior through the EEG , 1975 .

[215]  David C Spray,et al.  A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. , 2006, Biophysical journal.

[216]  Thomas Wennekers,et al.  Synfire chains with conductance-based neurons: internal timing and coordination with timed input , 2005, Neurocomputing.

[217]  R. Llinás,et al.  Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. , 1971, Journal of neurophysiology.

[218]  A. Araque,et al.  Dynamic signaling between astrocytes and neurons. , 2001, Annual review of physiology.

[219]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[220]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[221]  W. Webb,et al.  Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis , 2004, Science.

[222]  B. Rosen,et al.  Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[223]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[224]  Robert Costalat,et al.  A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging , 2002, NeuroImage.

[225]  B. Horwitz,et al.  Predicting human functional maps with neural net modeling , 1999, Human brain mapping.

[226]  Vincenzo Crunelli,et al.  Modelling large scale neuronal networks using ‘average neurones’ , 2002, Neuroreport.

[227]  Roman R Poznanski,et al.  Dendritic integration in a recurrent network. , 2002, Journal of integrative neuroscience.

[228]  R G Shulman,et al.  Cerebral energetics and the glycogen shunt: Neurochemical basis of functional imaging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[229]  Ronald J. MacGregor,et al.  Theoretical Mechanics of Biological Neural Networks , 1993 .

[230]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[231]  Karl J. Friston,et al.  Neural modeling and functional brain imaging: an overview , 2000, Neural Networks.

[232]  A. van Rotterdam Electric and magnetic fields of the brain computed by way of a discrete systems analytical approach: Theory and validation , 2004, Biological Cybernetics.

[233]  Alan L. Yuille,et al.  Spatiotemporal information storage in a content addressable memory using realistic neurons , 1994, Neural Networks.

[234]  G. Chauvet An n-level field theory of biological neural networks , 1993, Journal of mathematical biology.

[235]  Burkhart Fischer,et al.  A neuron field theory: Mathemalical approaches to the problem of large numbers of interacting nerve cells , 1973 .

[236]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[237]  J. Rinzel,et al.  Propagating activity patterns in large-scale inhibitory neuronal networks. , 1998, Science.

[238]  H Eichenbaum,et al.  Thinking about brain cell assemblies. , 1993, Science.

[239]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[240]  H C Tuckwell,et al.  Continuum models in neurobiology and information processing. , 1998, Bio Systems.

[241]  William G. Gibson,et al.  Cable analysis of a motor-nerve terminal branch in a volume conductor , 1999 .

[242]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[243]  W. Gibson,et al.  Quantal and non-quantal current and potential fields around individual sympathetic varicosities on release of ATP. , 2001, Biophysical journal.

[244]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[245]  J. Szentágothai The Ferrier Lecture, 1977 The neuron network of the cerebral cortex: a functional interpretation , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[246]  L. Ingber Statistical Mechanics of Neocortical Interactions. I. Basic Formulation , 2001 .

[247]  Shun-ichi Amari,et al.  Field theory of self-organizing neural nets , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[248]  Gaetano Liborio Aiello,et al.  Diffusive neural network , 2002, Neurocomputing.

[249]  Joel L. Davis,et al.  Neuronal ensembles : strategies for recording and decoding , 2000 .

[250]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[251]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[252]  Marcus E. Raichle,et al.  Cognitive neuroscience: Bold insights , 2001, Nature.

[253]  F Kruggel,et al.  Modeling the hemodynamic response in single‐trial functional MRI experiments , 1999, Magnetic resonance in medicine.

[254]  Ajay Kapur,et al.  Modeling of Large Networks , 2000 .

[255]  Hong Wang,et al.  Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. , 2005, Cerebral cortex.

[256]  N J Shah,et al.  On the relation between brain images and brain neural networks , 2000, Human brain mapping.

[257]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[258]  Ying Zheng,et al.  A Model of the Hemodynamic Response and Oxygen Delivery to Brain , 2002, NeuroImage.

[259]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[260]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[261]  Yasumasa Matsuda,et al.  A Spatio-temporal Regression Model for the Analysis of Functional MRI Data , 2002, NeuroImage.

[262]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[263]  Henry C. Tuckwell,et al.  Use of Green's function matrices for systems of diffusion equations , 1988 .

[264]  A. Reyes Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro , 2003, Nature Neuroscience.

[265]  R R Poznanski,et al.  A dendritic cable model for the amplification of synaptic potentials by an ensemble average of persistent sodium channels. , 2000, Mathematical biosciences.

[266]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[267]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[268]  Gilbert A Chauvet,et al.  On the mathematical integration of the nervous tissue based on the S-propagator formalism. , 2002, Journal of integrative neuroscience.

[269]  Peter A. Bandettini,et al.  Weight-space mapping of FMRI motor tasks: evidence for nested neural networks , 1997 .

[270]  Heiko J. Luhmann,et al.  Multi-level network modeling of cortical dynamics built on the GENESIS environment , 2002, Neurocomputing.

[271]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[272]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[273]  Roman R Poznanski,et al.  Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites. , 2004, Journal of integrative neuroscience.

[274]  A. Toga,et al.  Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses , 2004, Neuron.

[275]  Moshe Abeles Analysis of Single-Unit Activity in the Cerebral Cortex , 1994 .

[276]  Eric A Newman,et al.  Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling , 2006, The Journal of Neuroscience.

[277]  Nikolas Offenhauser,et al.  Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum , 2004, The Journal of physiology.

[278]  Scott T. Grafton,et al.  Synthetic PET: Analyzing large‐scale properties of neural networks , 1994 .

[279]  Emery N. Brown,et al.  Locally Regularized Spatiotemporal Modeling and Model Comparison for Functional MRI , 2001, NeuroImage.

[280]  Viktor K. Jirsa,et al.  Connectivity and dynamics of neural information processing , 2007, Neuroinformatics.

[281]  R Valabrègue,et al.  Modelling of the Coupling between Brain Electrical Activity and Metabolism , 2001, Acta biotheoretica.

[282]  E Fransén,et al.  A model of cortical associative memory based on a horizontal network of connected columns. , 1998, Network.

[283]  A. Hudetz,et al.  Mathematical model of oxygen transport in the cerebral cortex , 1999, Brain Research.