Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells

Here we report an efficient and reproducible multifunctional additive engineering strategy via methoxysilane cross-linking agents functionalized by the different terminal group, moderate electron-d...

[1]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[2]  S. Zakeeruddin,et al.  Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics , 2018, Advanced Energy Materials.

[3]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[4]  Michael Grätzel,et al.  Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability , 2018, Nature Communications.

[5]  A. Elmustafa,et al.  Influence of air degradation on morphology, crystal size and mechanical hardness of perovskite film , 2018, Materials Letters.

[6]  Wenjun Zhang,et al.  In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells , 2018, Nature Communications.

[7]  N. Park,et al.  Causes and Solutions of Recombination in Perovskite Solar Cells , 2018, Advanced materials.

[8]  N. Park,et al.  FA0.88Cs0.12PbI3−x(PF6)x Interlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability , 2018, Advanced materials.

[9]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[10]  H. Tian,et al.  Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group , 2018 .

[11]  A. Jen,et al.  Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering , 2018, Advanced materials.

[12]  Dong Hoe Kim,et al.  Stable Formamidinium‐Based Perovskite Solar Cells via In Situ Grain Encapsulation , 2018, Advanced Energy Materials.

[13]  A. Hagfeldt,et al.  Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency , 2018, ACS omega.

[14]  B. Dunn,et al.  Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. , 2018, Journal of the American Chemical Society.

[15]  C. Ducati,et al.  Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy , 2018 .

[16]  J. Hofkens,et al.  Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells , 2018, Nature Communications.

[17]  Gang Li,et al.  Stable and Efficient Organo‐Metal Halide Hybrid Perovskite Solar Cells via π‐Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction , 2018, Advanced materials.

[18]  N. Park,et al.  Efficient and Reproducible CH3NH3PbI3 Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive. , 2018, ACS applied materials & interfaces.

[19]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[20]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[21]  Aifei Wang,et al.  Alkyl-Thiol Ligand-Induced Shape- and Crystalline Phase-Controlled Synthesis of Stable Perovskite-Related CsPb2Br5 Nanocrystals at Room Temperature. , 2017, The journal of physical chemistry letters.

[22]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[23]  Y. Qi,et al.  Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. , 2017, ACS applied materials & interfaces.

[24]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[25]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[26]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[27]  Qingfeng Dong,et al.  Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene , 2016, Nature Communications.

[28]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[29]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[30]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[31]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[32]  Wai Kin Chan,et al.  Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? , 2016 .

[33]  E. Handick,et al.  Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films. , 2015, ACS applied materials & interfaces.

[34]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[35]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[36]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[37]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[38]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[39]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[40]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[41]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[42]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[43]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .