An algorithm for computing invariants of differential Galois groups

[1]  Daniel Bertrand,et al.  Équations différentielles linéaires et majorations de multiplicités , 1985 .

[2]  Moulay A. Barkatou,et al.  Rational Newton Algorithm for Computing Formal Solutions of Linear Differential Equations , 1988, ISSAC.

[3]  A. H. M. Levelt,et al.  Differential Galois theory and tensor products , 1990 .

[4]  Frits Beukers,et al.  Differential Galois Theory , 1992 .

[5]  Michel Waldschmidt,et al.  From Number Theory to Physics , 1992 .

[6]  M. Ph. Saux Picart Schur-Cohn Sub-Transforms of a Polynomial , 1993, J. Symb. Comput..

[7]  J. I. Ramos Computer Algebra and Differential Equations : E. Tournier, editor Academic Press, New York, 1991, £35 , 1993 .

[8]  Michael F. Singer,et al.  Liouvillian and Algebraic Solutions of Second and Third Order Linear Differential Equations , 1993, J. Symb. Comput..

[9]  Michael F. Singer,et al.  Galois Groups of Second and Third Order Linear Differential Equations , 1993, J. Symb. Comput..

[10]  Jacques-Arthur Weil Constantes et polynomes de darboux en algebre differentielle : application aux systemes differentiels lineaires , 1995 .

[11]  Jacques-Arthur Weil,et al.  First Integrals and Darboux Polynomials of Homogeneous Linear Differential Systems , 1995, AAECC.

[12]  Marius van der Put,et al.  Galois Action on Solutions of a Differential Equation , 1995, J. Symb. Comput..

[13]  Mark van Hoeij,et al.  Formal Solutions and Factorization of Differential Operators with Power Series Coefficients , 1997, J. Symb. Comput..

[14]  Michael F. Singer,et al.  Linear differential equations and products of linear forms , 1997 .

[15]  Mark van Hoeij,et al.  Factorization of Differential Operators with Rational Functions Coefficients , 1997, J. Symb. Comput..