Recommendations for the formulation of grazing in marine biogeochemical and ecosystem models

[1]  M. Galí,et al.  Use of Genetic Algorithms for Ocean Model Parameter Optimisation , 2021, Geoscientific Model Development.

[2]  K. Denman,et al.  Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE , 2021, Geoscientific Model Development.

[3]  Y. Shin,et al.  Next-generation ensemble projections reveal higher climate risks for marine ecosystems , 2021, Nature Climate Change.

[4]  S. Smith,et al.  Enhancing Ocean Biogeochemical Models With Phytoplankton Variable Composition , 2021, Frontiers in Marine Science.

[5]  L. Bopp,et al.  Should we account for mesozooplankton reproduction and ontogenetic growth in biogeochemical modeling? , 2021, Theoretical Ecology.

[6]  Jessica Y. Luo,et al.  Simulations With the Marine Biogeochemistry Library (MARBL) , 2021, Journal of Advances in Modeling Earth Systems.

[7]  M. Ohman,et al.  On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing , 2021, PloS one.

[8]  K. Eiane,et al.  Two hundred years of zooplankton vertical migration research , 2021, Biological reviews of the Cambridge Philosophical Society.

[9]  H. Campbell,et al.  The consequences of checking for zero‐inflation and overdispersion in the analysis of count data , 2019, Methods in Ecology and Evolution.

[10]  A. Robock,et al.  Marine wild-capture fisheries after nuclear war , 2020, Proceedings of the National Academy of Sciences.

[11]  G. Gauthier,et al.  Derivation of predator functional responses using a mechanistic approach in a natural system , 2020, bioRxiv.

[12]  J. Blanchard,et al.  A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition , 2020 .

[13]  J. Dunne,et al.  Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO2 , 2020, Journal of Advances in Modeling Earth Systems.

[14]  A. Ito,et al.  Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks , 2020, Geoscientific Model Development.

[15]  C. Heinze,et al.  Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2) , 2020, Geoscientific Model Development.

[16]  Kevin A. Hovel,et al.  Predator type influences the frequency of functional responses to prey in marine habitats , 2020, Biology Letters.

[17]  A. Yool Interactive comment on “Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 Historical simulations” , 2020 .

[18]  E. Fulton,et al.  Atlantis: A spatially explicit end‐to‐end marine ecosystem model with dynamically integrated physics, ecology and socio‐economic modules , 2019, Methods in Ecology and Evolution.

[19]  Nicolas Hoepffner,et al.  Satellite-based indicator of zooplankton distribution for global monitoring , 2019, Scientific Reports.

[20]  S. Doney,et al.  Modeling the Impact of Zooplankton Diel Vertical Migration on the Carbon Export Flux of the Biological Pump , 2019, Global Biogeochemical Cycles.

[21]  I. Totterdell Description and evaluation of the Diat-HadOCC model v1.0: the ocean biogeochemical component of HadGEM2-ES , 2017, Geoscientific Model Development.

[22]  Daniel B. Stouffer,et al.  Community dynamics and sensitivity to model structure: towards a probabilistic view of process-based model predictions , 2018, Journal of the Royal Society Interface.

[23]  M. Long,et al.  Mesoscale Effects on Carbon Export: A Global Perspective , 2018 .

[24]  Barbara A. Block,et al.  Tracking the global footprint of fisheries , 2018, Science.

[25]  Jeroen Steenbeek,et al.  A protocol for the intercomparison of marine fishery and ecosystem models : Fish-MIP v1.0 , 2017 .

[26]  J. Blanchard,et al.  From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems. , 2017, Trends in ecology & evolution.

[27]  M. Alver,et al.  Validation of an Eulerian population model for the marine copepod Calanus finmarchicus in the Norwegian Sea , 2016 .

[28]  M. Pahlow,et al.  Flexible phytoplankton functional type (FlexPFT) model: Size-scaling of traits and optimal growth , 2016 .

[29]  Corinne Le Quéré,et al.  Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles , 2016 .

[30]  Thomas Slawig,et al.  Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling , 2016 .

[31]  K. Flynn,et al.  Why Plankton Modelers Should Reconsider Using Rectangular Hyperbolic (Michaelis-Menten, Monod) Descriptions of Predator-Prey Interactions , 2016, Front. Mar. Sci..

[32]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[33]  Corinne Le Quéré,et al.  Drivers and uncertainties of future global marine primary production in marine ecosystem models , 2015 .

[34]  T. Ziehn,et al.  The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation , 2015 .

[35]  Julian Icarus Allen,et al.  ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels , 2015 .

[36]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[37]  Watson W. Gregg,et al.  Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model , 2015 .

[38]  Mark W. Denny Buzz Holling and the Functional Response , 2014 .

[39]  E. Laws,et al.  Estimating microzooplankton grazing half‐saturation constants from dilution experiments with nonlinear feeding kinetics , 2014 .

[40]  John P. Dunne,et al.  Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical–biological model , 2014 .

[41]  M. Losch,et al.  Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode , 2013, Global biogeochemical cycles.

[42]  Scott C. Doney,et al.  Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios , 2013 .

[43]  John S. Parslow,et al.  A model of annual plankton cycles , 2013 .

[44]  David A. Siegel,et al.  Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom , 2013 .

[45]  A. Leising,et al.  Foray foraging behavior: seasonally variable, food-driven migratory behavior in two calanoid copepod species , 2013 .

[46]  K. Wirtz How fast can plankton feed? maximum ingestion rate scales with digestive surface area , 2013 .

[47]  Peter R. Oke,et al.  Evaluation of a near-global eddy-resolving ocean model , 2012 .

[48]  R. Moriarty,et al.  Distribution of mesozooplankton biomass in the global ocean , 2012 .

[49]  J. Nishioka,et al.  Development of a one‐dimensional ecosystem model including the iron cycle applied to the Oyashio region, western subarctic Pacific , 2012 .

[50]  Corinne Le Quéré,et al.  Distribution of known macrozooplankton abundance and biomass in the global ocean , 2012 .

[51]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[52]  K. Richardson,et al.  Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity , 2012 .

[53]  Fouad Badran,et al.  Improving the parameters of a global ocean biogeochemical model via variational assimilation of in situ data at five time series stations , 2011 .

[54]  Stephanie Dutkiewicz,et al.  Modeling diverse communities of marine microbes. , 2011, Annual review of marine science.

[55]  James C McWilliams,et al.  Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.

[56]  Thomas R. Anderson,et al.  Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model , 2010 .

[57]  A. Morozov,et al.  Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. , 2010, Journal of theoretical biology.

[58]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[59]  A. Morozov,et al.  Towards a correct description of zooplankton feeding in models: taking into account food-mediated unsynchronized vertical migration. , 2010, Journal of theoretical biology.

[60]  Olivier Maury,et al.  An overview of APECOSM, a spatialized mass balanced “Apex Predators ECOSystem Model” to study physiologically structured tuna population dynamics in their ecosystem , 2010 .

[61]  Howard Weiss,et al.  Author's Personal Copy Ecological Modelling Modeling Inverted Biomass Pyramids and Refuges in Ecosystems , 2022 .

[62]  Thomas M. Powell,et al.  Bottom–up and top–down forcing in a simple size-structured plankton dynamics model , 2008 .

[63]  Anna B. Neuheimer,et al.  Functional responses and ecosystem dynamics: how clearance rates explain the influence of satiation, food-limitation and acclimation , 2008 .

[64]  S. Falk‐Petersen,et al.  Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations , 2008 .

[65]  Alan E. Wilson,et al.  Type III functional response in Daphnia. , 2008, Ecology.

[66]  Andrew Morozov,et al.  Patterns of Zooplankton Functional Response in Communities with Vertical Heterogeneity: a Model Study , 2008 .

[67]  K. Brander Global fish production and climate change , 2007, Proceedings of the National Academy of Sciences.

[68]  V. Jansen,et al.  How population dynamics shape the functional response in a one-predator-two-prey system. , 2007, Ecology.

[69]  E. Saiz,et al.  Scaling of feeding in marine calanoid copepods , 2007 .

[70]  Marcello Vichi,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory , 2007 .

[71]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[72]  Thomas R. Anderson,et al.  Plankton functional type modelling : running before we can walk? , 2005 .

[73]  Frank Mathias Hilker,et al.  Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection , 2005, Math. Comput. Model..

[74]  I. Gismervik Numerical and functional responses of choreo- and oligotrich planktonic ciliates , 2005 .

[75]  K. Ruddick,et al.  Modelling diatom and Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model , 2005 .

[76]  Bernd Blasius,et al.  Community response to enrichment is highly sensitive to model structure , 2005, Biology Letters.

[77]  W. Lampert,et al.  Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs , 2005, BMC Biology.

[78]  Ralph Tollrian,et al.  Consumer‐food systems: why type I functional responses are exclusive to filter feeders , 2004, Biological reviews of the Cambridge Philosophical Society.

[79]  Thilo Gross,et al.  Enrichment and foodchain stability: the impact of different forms of predator-prey interaction. , 2004, Journal of theoretical biology.

[80]  W. G. Sprules,et al.  Type-3 functional response in limnetic suspension-feeders, as demonstrated by in situ grazing rates , 1992, Hydrobiologia.

[81]  E. Hernández‐García,et al.  Sustained plankton blooms under open chaotic flows , 2003, nlin/0311054.

[82]  W. C. Gentleman,et al.  The threshold feeding response of microzooplankton within Pacific high-nitrate low-chlorophyll ecosystem models under steady and variable iron input , 2003 .

[83]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic Ocean: Part 2) Standing stocks and nitrogen fluxes , 2003 .

[84]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I— Method and parameter estimates , 2003 .

[85]  James W. Murray,et al.  Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics , 2003 .

[86]  A. Hirst,et al.  Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight , 2003 .

[87]  S. Pearre Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences , 2003, Biological reviews of the Cambridge Philosophical Society.

[88]  P. Franks,et al.  A 3-D prognostic numerical model study of the Georges bank ecosystem. Part II: biological–physical model , 2001 .

[89]  Walker O. Smith,et al.  Temperature effects on export production in the open ocean , 2000 .

[90]  Thomas M. Powell,et al.  Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system , 2000 .

[91]  Andrew M. Edwards,et al.  The role of higher predation in plankton population models , 2000 .

[92]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[93]  The stability of an NPZ model subject to realistic levels of vertical mixing , 2000 .

[94]  S. Doney Major challenges confronting marine biogeochemical modeling , 1999 .

[95]  P. Mayzaud,et al.  The influence of food quality on the nutritional acclimation of the copepod Acartia clausi , 1998 .

[96]  S. Strom,et al.  Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates , 1998 .

[97]  A. Richardson,et al.  The relative importance of food and temperature to copepod egg production and somatic growth in the southern Benguela upwelling system , 1998 .

[98]  Tom Andersen,et al.  Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model , 1997 .

[99]  P. K. Bjørnsen,et al.  Zooplankton grazing and growth: Scaling within the 2‐2,‐μm body size range , 1997 .

[100]  J. Giske,et al.  Ideal free distribution of copepods under predation risk , 1997 .

[101]  Changsheng Chen,et al.  Plankton production in tidal fronts : A model of Georges Bank in summer , 1996 .

[102]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[103]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[104]  M. Fasham Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis , 1995 .

[105]  J. Truscott,et al.  Ocean plankton populations as excitable media , 1994 .

[106]  J. Truscott,et al.  Equilibria, stability and excitability in a general class of plankton population models , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[107]  J. Steele,et al.  The role of predation in plankton models , 1992 .

[108]  Dag L. Aksnes,et al.  A theoretical model for nutrient uptake in phytoplankton , 1991 .

[109]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[110]  Mark D. Ohman,et al.  The Demographic Benefits of Diel Vertical Migration by Zooplankton , 1990 .

[111]  J. G. Field,et al.  General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms , 1989 .

[112]  W. Murdoch,et al.  Cyclic and Stable Populations: Plankton as Paradigm , 1987, The American Naturalist.

[113]  S. Uye Impact of copepod grazing on the red-tide flagellate Chattonella antiqua , 1986 .

[114]  Glenn R. Flierl,et al.  Behavior of a simple plankton model with food-level acclimation by herbivores , 1986 .

[115]  Robert H. Peters,et al.  Empirical analysis of zooplankton filtering and feeding rates1 , 1984 .

[116]  T. Platt,et al.  Numerical modelling of diel carbon production and zooplankton grazing on the Scotian shelf based on observational data , 1983 .

[117]  L. Real Ecological Determinants of Functional Response , 1979 .

[118]  P. Mayzaud,et al.  The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter 1 , 1978 .

[119]  Leslie A. Real,et al.  The Kinetics of Functional Response , 1977, The American Naturalist.

[120]  William W. Murdoch,et al.  Functional Response and Stability in Predator-Prey Systems , 1975, The American Naturalist.

[121]  B. Frost A threshold feeding behavior in Calanus pacificus1 , 1975 .

[122]  J. Steele Stability of plankton ecosystems , 1974 .

[123]  B. Frost EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS1 , 1972 .

[124]  John Caperon,et al.  Population Growth in Micro-Organisms Limited by Food Supply. , 1967, Ecology.

[125]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[126]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[127]  C. S. Holling The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly , 1959, The Canadian Entomologist.

[128]  J. Monod The Growth of Bacterial Cultures , 1949 .

[129]  M. Solomon The Natural Control of Animal Populations , 1949 .

[130]  A. J. Lotka Contribution to the Theory of Periodic Reactions , 1909 .