Optical Antennas

Optical antennas are an emerging concept in physical optics. Similar to radiowave and microwave antennas, their purpose is to convert the energy of free propagating radiation to localized energy, and vice versa. Optical antennas exploit the unique properties of metal nanostructures, which behave as strongly coupled plasmas at optical frequencies. The tutorial provides an account of the historical origins and the basic concepts and parameters associated with optical antennas. It also reviews recent work in the field and discusses areas of application, such as light-emitting devices, photovoltaics, and spectroscopy. © 2009 Optical Society of America

[1]  Jean-Jacques Greffet,et al.  Single-molecule spontaneous emission close to absorbing nanostructures , 2004 .

[2]  Satoshi Kawata,et al.  Scanning probe optical microscopy using a metallic probe tip , 1995 .

[3]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[4]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[5]  Wenbin Wang Scanning Tunneling Microscopy , 2009 .

[6]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[7]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[8]  C. Hägglund Nanoparticle plasmon influence on the charge carrier generation in solar cells , 2008 .

[9]  Glenn D. Boreman,et al.  Infrared microstrip dipole antennas—FDTD predictions versus experiment , 2001 .

[10]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[11]  W. K. Burns,et al.  Reflected third harmonic generated by picosecond laser pulses , 1969 .

[12]  L. Novotný,et al.  Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement , 2002 .

[13]  G. Agarwal,et al.  Laser-induced resonance shifts of single molecules self-coupled by a metallic surface. , 2007, Physical review letters.

[14]  Lukas Novotny,et al.  Characterization of nanoplasmonic structures by locally excited photoluminescence , 2003 .

[15]  Coherently controlled femtosecond energy localization on nanoscale , 2002 .

[16]  O. Svelto,et al.  Highly efficient second-harmonic nanosource for near-field optics and microscopy. , 2004, Optics letters.

[17]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[18]  Federico Capasso,et al.  Near-field imaging of quantum cascade laser transverse modes. , 2007, Optics express.

[19]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[20]  Thierry Laroche,et al.  Near-field optical properties of single plasmonic nanowires , 2006 .

[21]  Paul K. L. Yu,et al.  Nanoparticle-induced light scattering for improved performance of quantum-well solar cells , 2008 .

[22]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[23]  G. Pierce Experiments on Resonance in Wireless Telegraph Circuits , 1904 .

[24]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[25]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[26]  Aurélien Bruyant,et al.  Gain, detuning, and radiation patterns of nanoparticle optical antennas , 2008 .

[27]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[28]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[29]  Timurbek Usmanov,et al.  Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals , 2004 .

[30]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .

[31]  F. Keilmann,et al.  Complex optical constants on a subwavelength scale. , 2000, Physical review letters.

[32]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[33]  Jesper Jung,et al.  Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz , 2009 .

[34]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[35]  Richard A. Soref,et al.  Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays , 2008 .

[36]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[37]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[38]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[39]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[40]  Javier Alda,et al.  Optical antennas for nano-photonic applications , 2005 .

[41]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[42]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[43]  Alvin M. Dr. Marks,et al.  Ordered dipolar light-electric power converter ordered dipolar light-electric power converter , 1985 .

[44]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[45]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[46]  M. Moskovits Surface-Enhanced Raman Spectroscopy: a Brief Perspective , 2006 .

[47]  Paul F. Liao,et al.  Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit , 1985 .

[48]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[49]  G. Marconi Wireless telegraphic communication , 2002 .

[50]  Ronald R. Chance,et al.  Lifetime of an emitting molecule near a partially reflecting surface , 1974 .

[51]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[52]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[53]  R. Harney,et al.  Optical resonance and two-level atoms , 1978, IEEE Journal of Quantum Electronics.

[54]  M. Kirkengen,et al.  Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles , 2007, 0708.2662.

[55]  A. Hohenau,et al.  Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles , 2005 .

[56]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[57]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[58]  Christopher Middlebrook,et al.  Infrared phased‐array antenna , 2008 .

[59]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[60]  L. Novotný,et al.  Nonlinear excitation of surface plasmon polaritons by four-wave mixing. , 2008, Physical review letters.

[61]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[62]  S. Walter,et al.  La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs , 2007 .

[63]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[64]  Calvert Watkins The American Heritage Dictionary of Indo-European Roots , 2011 .

[65]  Lukas Novotny,et al.  Tip-enhanced optical spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[67]  Theeradetch Detchprohm,et al.  GaInN∕GaN growth optimization for high-power green light-emitting diodes , 2004 .

[68]  L. Novotný,et al.  Nonlinear plasmonics with gold nanoparticle antennas , 2009 .

[69]  Z. Vardeny,et al.  Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array , 2005 .

[70]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[71]  Glenn D. Boreman Infrared microantennas , 1997, Other Conferences.

[72]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[73]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[74]  Mark I. Stockman,et al.  Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory , 2004 .

[75]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[76]  L. Novotný,et al.  Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement , 2002 .

[77]  Alexandra Boltasseva,et al.  Near-field excitation of nanoantenna resonance. , 2007, Optics express.

[78]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[79]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[80]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[81]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[82]  R. L. Bailey,et al.  A Proposed New Concept for a Solar-Energy Converter , 1972 .

[83]  Koichi Yamada,et al.  Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films , 2000 .

[84]  Alan Stringer,et al.  Let there be light. , 2011, Scientific American.

[85]  R. Esteban,et al.  Influence of metallic nanoparticles on up-conversion processes , 2008, 0810.1218.

[86]  J. Aizpurua,et al.  Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. , 2006, Physical review letters.

[87]  Daniel Courjon,et al.  History of Near-field Optics , 2003 .

[88]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[89]  K. Joulain,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[90]  G D Boreman,et al.  Polarization response of asymmetric-spiral infrared antennas. , 1997, Applied optics.

[91]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[92]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[93]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[94]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[95]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[96]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[97]  T. Yoko,et al.  Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method , 1997 .

[98]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[99]  Vladimir M. Shalaev,et al.  Electromagnetic properties of small-particle composites , 1996 .

[100]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[101]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[102]  Martin A. Green,et al.  Enhanced emission from Si-based light-emitting diodes using surface plasmons , 2006 .

[103]  Maxim Sukharev,et al.  Phase and polarization control as a route to plasmonic nanodevices. , 2006, Nano letters.

[104]  A. Javan,et al.  FREQUENCY MIXING IN THE INFRARED AND FAR‐INFRARED USING A METAL‐TO‐METAL POINT CONTACT DIODE , 1968 .

[105]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[106]  Ferenc Krausz,et al.  Attosecond Nanoplasmonic Field Microscope , 2007 .

[107]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[108]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[109]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[110]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[111]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[112]  T. Yoko,et al.  Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles , 1996 .

[113]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[114]  Jean-Jacques Greffet,et al.  Reciprocity of evanescent electromagnetic waves , 1998 .

[115]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[116]  Richard Corkish,et al.  Solar energy collection by antennas , 2002 .

[117]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[118]  S. Winnerl,et al.  Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy. , 2008, Optics express.

[119]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[120]  L. Novotný,et al.  Imaging of membrane proteins using antenna-based optical microscopy , 2008, Nanotechnology.

[121]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[122]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[123]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[124]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[125]  A. Jorio,et al.  Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping. , 2008, Nano letters.

[126]  Telegraphy Montchyk WIRELESS TELEGRAPHY. , 1900, Science.

[127]  L. Novotný,et al.  Near-field amplitude and phase recovery using phase-shifting interferometry. , 2008, Optics express.

[128]  William L. Barnes,et al.  Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices , 1999 .

[129]  Younan Xia,et al.  Excitation enhancement of CdSe quantum dots by single metal nanoparticles , 2008 .

[130]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[131]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[132]  R. Sillitto The Quantum Theory of Light , 1974 .

[133]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[134]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[135]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[136]  Lukas Novotny,et al.  Nanoscale optical imaging of excitons in single-walled carbon nanotubes. , 2005, Nano letters.

[137]  J. Aizpurua,et al.  Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams , 2008 .

[138]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[139]  Zygmunt Gryczynski,et al.  Radiative decay engineering: the role of photonic mode density in biotechnology. , 2003, Journal of physics D: Applied physics.

[140]  Anika Kinkhabwala,et al.  Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. , 2006, The Journal of chemical physics.

[141]  Michel Orrit,et al.  Third-harmonic generation from single gold nanoparticles. , 2005, Nano letters.

[142]  V Sandoghdar,et al.  Optical microscopy via spectral modifications of a nanoantenna. , 2005, Physical review letters.

[143]  Nathan S. Lewis,et al.  Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .

[144]  H. Rabitz,et al.  Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .

[145]  Gordana Dukovic,et al.  Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. , 2004, Physical review letters.

[146]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[147]  K. Catchpole,et al.  Absorption enhancement due to scattering by dipoles into silicon waveguides , 2006 .

[148]  P Bushev,et al.  Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror. , 2003, Physical review letters.

[149]  Thomas Søndergaard,et al.  Metal nano-strip optical resonators. , 2007, Optics express.

[150]  M. Garcia-Parajo,et al.  Influencing the angular emission of a single molecule. , 2000, Physical review letters.

[151]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[152]  L. Novotný,et al.  Exciton transfer and propagation in carbon nanotubes studied by near‐field optical microscopy , 2008 .

[153]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[154]  F. J. García de abajo,et al.  Probing the photonic local density of states with electron energy loss spectroscopy. , 2007, Physical review letters.

[155]  Keiko Munechika,et al.  Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. , 2007, Nano letters.

[156]  V. Letokhov,et al.  Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface , 2005 .

[157]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[158]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[159]  L. Novotný,et al.  Tip-enhanced optical spectroscopy of single-walled carbon nanotubes , 2007 .

[160]  N. V. van Hulst,et al.  Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection. , 2005, Optics express.

[161]  Hans Kuhn,et al.  Classical Aspects of Energy Transfer in Molecular Systems , 1970 .

[162]  Glenn D Boreman,et al.  Near-field imaging of optical antenna modes in the mid-infrared. , 2008, Optics express.

[163]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[164]  Fischer,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989, Physical review letters.

[165]  B. Hecht,et al.  Near-field optics seen as an antenna problem , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[166]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[167]  A. Broca,et al.  La télégraphie sans fils , 1899 .

[168]  William C. Brown,et al.  The History of Power Transmission by Radio Waves , 1984 .

[169]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[170]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[171]  A. Boccara,et al.  Near-field optical microscope based on local perturbation of a diffraction spot. , 1995, Optics letters.

[172]  X. Xie,et al.  Optical studies of single molecules at room temperature. , 1998, Annual review of physical chemistry.

[173]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[174]  R. R. Ernst,et al.  Energy transfer in surface enhanced luminescence , 1983 .

[175]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[176]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[177]  Fred Gardiol,et al.  Salvan : Cradle of wireless , 2006 .

[178]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[179]  K. Kern,et al.  Plasmonic nanostructures in aperture‐less scanning near‐field optical microscopy (aSNOM) , 2008 .

[180]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[181]  Kenneth M. Evenson,et al.  IMPROVED COUPLING TO INFRARED WHISKER DIODES BY USE OF ANTENNA THEORY , 1970 .

[182]  Lukas Novotny,et al.  Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. , 2008, Nano letters.

[183]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[184]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[185]  K. Kempa,et al.  Carbon Nanotubes as Optical Antennae , 2007 .

[186]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[187]  E. S. Gillespie,et al.  IEEE Standard Definitions of Terms for Antennas , 1993 .

[188]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[189]  M. Stockman Ultrafast nanoplasmonics under coherent control , 2008 .

[190]  P. Schlotter,et al.  Luminescence conversion of blue light emitting diodes , 1997 .

[191]  Volker Deckert,et al.  Tip-enhanced Raman scattering. , 2008, Chemical Society reviews.

[192]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .