Learning Saliency by MRF and Differential Threshold

Saliency detection has been an attractive topic in recent years. The reliable detection of saliency can help a lot of useful processing without prior knowledge about the scene, such as content-aware image compression, segmentation, etc. Although many efforts have been spent in this subject, the feature expression and model construction are far from perfect. The obtained saliency maps are therefore not satisfying enough. In order to overcome these challenges, this paper presents a new psychologic visual feature based on differential threshold and applies it in a supervised Markov-random-field framework. Experiments on two public data sets and an image retargeting application demonstrate the effectiveness, robustness, and practicability of the proposed method.

[1]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[2]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[4]  Nuno Vasconcelos,et al.  Integrated learning of saliency, complex features, and object detectors from cluttered scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  S. Avidan,et al.  Seam carving for content-aware image resizing , 2007, SIGGRAPH 2007.

[6]  Denis Pellerin,et al.  Video summarization using a visual attention model , 2007, 2007 15th European Signal Processing Conference.

[7]  Víctor Leborán,et al.  On the relationship between optical variability, visual saliency, and eye fixations: a computational approach. , 2012, Journal of vision.

[8]  Bill Triggs,et al.  Scene Segmentation with CRFs Learned from Partially Labeled Images , 2007, NIPS.

[9]  Miska M. Hannuksela,et al.  Perceptual quality assessment based on visual attention analysis , 2009, ACM Multimedia.

[10]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[11]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Xuelong Li,et al.  Saliency Detection by Multiple-Instance Learning , 2013, IEEE Transactions on Cybernetics.

[13]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  Esa Rahtu,et al.  Segmenting Salient Objects from Images and Videos , 2010, ECCV.

[15]  Pingkun Yan,et al.  Visual Saliency by Selective Contrast , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Christof Koch,et al.  Attentional Selection for Object Recognition - A Gentle Way , 2002, Biologically Motivated Computer Vision.

[17]  Long Quan,et al.  Image deblurring with blurred/noisy image pairs , 2007, SIGGRAPH 2007.

[18]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Pietro Perona,et al.  Selective visual attention enables learning and recognition of multiple objects in cluttered scenes , 2005, Comput. Vis. Image Underst..

[20]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[21]  George K. I. Mann,et al.  An Object-Based Visual Attention Model for Robotic Applications , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Chanho Jung,et al.  A Unified Spectral-Domain Approach for Saliency Detection and Its Application to Automatic Object Segmentation , 2012, IEEE Transactions on Image Processing.

[23]  Yeong-Ho Ha,et al.  Spatial color descriptor for image retrieval and video segmentation , 2003, IEEE Trans. Multim..

[24]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[25]  Hao Jiang,et al.  Human Pose Estimation Using Consistent Max Covering , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[28]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  Simone Frintrop,et al.  A Real-time Visual Attention System Using Integral Images , 2007, ICVS 2007.

[30]  Alan C. Bovik,et al.  Visual Importance Pooling for Image Quality Assessment , 2009, IEEE Journal of Selected Topics in Signal Processing.

[31]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[33]  D. Spalding The Principles of Psychology , 1873, Nature.

[34]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[35]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[36]  Wencheng Wu,et al.  The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations , 2005 .

[37]  Antón García-Díaz,et al.  Saliency from hierarchical adaptation through decorrelation and variance normalization , 2012, Image Vis. Comput..

[38]  Fiora Pirri,et al.  Bottom-Up Gaze Shifts and Fixations Learning by Imitation , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[40]  Theo Gevers,et al.  A Perceptual Comparison of Distance Measures for Color Constancy Algorithms , 2008, ECCV.

[41]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  Peyman Milanfar,et al.  Nonparametric bottom-up saliency detection by self-resemblance , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[43]  Lihi Zelnik-Manor,et al.  Context-aware saliency detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[45]  Meng Wang,et al.  Image saliency: From intrinsic to extrinsic context , 2011, CVPR 2011.

[46]  Dattaguru V Kamat A framework for visual saliency detection with applications to image thumbnailing , 2009 .

[47]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[48]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[49]  Nanning Zheng,et al.  A biased sampling strategy for object categorization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[50]  Xuelong Li,et al.  Multi-spectral saliency detection , 2013, Pattern Recognit. Lett..

[51]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[52]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[53]  Nuno Vasconcelos,et al.  Discriminant Saliency for Visual Recognition from Cluttered Scenes , 2004, NIPS.

[54]  Shumeet Baluja Using Expectation to Guide Processing: A Study of Three Real-World Applications , 1997, NIPS.

[55]  Hao Jiang Human pose estimation using consistent max-covering , 2009, ICCV.