An approximation algorithm for the k-generalized Steiner forest problem

In this paper, we introduce the k -generalized Steiner forest ( k -GSF) problem, which is a natural generalization of the k -Steiner forest problem and the generalized Steiner forest problem. In this problem, we are given a connected graph $$G =(V,E)$$ G = ( V , E ) with non-negative costs $$c_{e}$$ c e for the edges $$e\in E$$ e ∈ E , a set of disjoint vertex sets $${\mathcal {V}}=\{V_{1},V_{2},\ldots ,V_{l}\}$$ V = { V 1 , V 2 , … , V l } and a parameter $$k\le l$$ k ≤ l . The goal is to find a minimum-cost edge set $$F\subseteq E$$ F ⊆ E that connects at least k vertex sets in $${\mathcal {V}}$$ V . Our main work is to construct an $$O(\sqrt{l})$$ O ( l ) -approximation algorithm for the k -GSF problem based on a greedy approach and an LP-rounding technique.

[1]  Peng Zhang,et al.  An approximation algorithm for the Generalized k-Multicut problem , 2012, Discret. Appl. Math..

[2]  Alex Zelikovsky,et al.  An 11/6-approximation algorithm for the network steiner problem , 1993, Algorithmica.

[3]  Danny Segev,et al.  Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing , 2008, Algorithmica.

[4]  Hans Jürgen Prömel,et al.  A New Approximation Algorithm for the Steiner Tree Problem with Performance Ratio 5/3 , 2000, J. Algorithms.

[5]  Sunil Arya,et al.  A 2.5-Factor Approximation Algorithm for the k-MST Problem , 1998, Inf. Process. Lett..

[6]  Tim Roughgarden,et al.  Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation , 2001, Math. Program..

[7]  Marek Karpinski,et al.  New Approximation Algorithms for the Steiner Tree Problems , 1997, J. Comb. Optim..

[8]  Fabrizio Grandoni,et al.  Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.

[9]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[10]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[11]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[12]  Mohammad Taghi Hajiaghayi,et al.  The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema , 2006, SODA '06.

[13]  R. Ravi,et al.  Dial a Ride from k-forest , 2007, TALG.

[14]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[15]  Naveen Garg,et al.  A 3-approximation for the minimum tree spanning k vertices , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[16]  Shikha Singh,et al.  Approximating k-forest with resource augmentation: A primal-dual approach , 2019, Theor. Comput. Sci..

[17]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.