A COLOR CONSTANCY APPROACH FOR ILLUMINATION INVARIANT COLOR TARGET TRACKING

In this work, we present a color target tracking algorithm aimed at robot localization in varying illumination conditions. In our approach a colored target is put on the top of the robot and a fixed camera is used to detect and track the target. The 3D robot position can be estimated knowing the camera parameters after an analysis of the camera image. The general setup of this approach is sketched on Figure 1: Many robotic agents use color vision to retrieve quality information about the environment. In this work, we present a visual servoing technique, where vision is the primary sensing modality and sensing is based upon the analysis of the perceived visual information. We describe how colored targets can be identified and how their position and motion can be estimated quickly and reliably. The visual servoing procedure is essentially a four-stage process, with color target identification, motion parameter estimation, target tracking and target position estimation. These individual parts add up to a global vision system enabling precise positioning for a demining robot. Mob t A fixed camera ile robo Color target Camera optical axis Geometry center of the target

[1]  Mark S. Drew,et al.  Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Markus Vincze,et al.  Robust tracking of ellipses at frame rate , 2001, Pattern Recognit..

[3]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[4]  Takeo Kanade,et al.  Bayesian color constancy for outdoor object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[6]  Mark S. Drew,et al.  Color constancy from mutual reflection , 1991, International Journal of Computer Vision.

[7]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[8]  Kobus Barnard,et al.  Practical colour constancy , 1999 .

[9]  Rafael Kelly,et al.  Robust asymptotically stable visual servoing of planar robots , 1996, IEEE Trans. Robotics Autom..

[10]  Th. Gevers,et al.  Reflectance Based Edge Classification , 1999 .

[11]  Peter K. Allen,et al.  Active, uncalibrated visual servoing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Brian V. Funt,et al.  Learning Color Constancy , 1996, CIC.

[13]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[14]  H. Sahli,et al.  Visual Servoing for Robot Navigation , 2001 .

[15]  M. Fujita,et al.  Visual feedback control of rigid body motion base on dissipation theoretical approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[17]  Ian D. Reid,et al.  The Pipe-group Architecture for Real-Time Active Vision , 1997, Real Time Imaging.

[18]  Michael H. Brill,et al.  Chromatic adaptation and color constancy: A possible dichotomy , 1986 .

[19]  James P. Ostrowski,et al.  Visual servoing with dynamics: control of an unmanned blimp , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Cordelia Schmid,et al.  Dynamic calibration of an active stereo head , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  M.S. de Queiroz,et al.  Robust visual-servo control of robot manipulators in the presence of uncertainty , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  Nicholas Ayache,et al.  Trinocular Stereo Vision for Robotics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..