Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport

Cellular automata (CA) and lattice Boltzmann (LB) approaches are computational methods that offer flexibility, efficiency and outstanding amenability to parallelism when modeling complex phenomena. In this paper, the CA and LB approach are combined in the same model, in order to describe a system where point-particles are transported in a fluid flow. This model is used to simulate the snow transport, erosion and deposition by the wind.

[1]  R. Sharp,et al.  Wind Ripples , 1963, The Journal of Geology.

[2]  S. Chen,et al.  A Lattice Boltzmann Subgrid Model for High , 1996 .

[4]  A. Masselot,et al.  Snow transport and deposition , 1972 .

[5]  L. Kadanoff On Two Levels , 1986 .

[6]  Dietrich Stauffer,et al.  Anual Reviews of Computational Physics VII , 1994 .

[7]  B. Chopard,et al.  Some properties of the diffusion-limited reaction nA + mB → C with homogeneous and inhomogeneous initial conditions , 1992 .

[8]  W. Hillis Richard Feynman and the connection machine , 1989 .

[9]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[10]  L. Kadanoff Cathedrals and Other Edifices , 1986 .

[11]  Sauro Succi,et al.  Recent Advances in Lattice Boltzmann Computing , 1995 .

[12]  Shiyi Chen,et al.  A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows , 1994, comp-gas/9401004.

[13]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .

[14]  北海道大学低温科学研究所 Contributions from the Institute of Low Temperature Science. Series A , 1962 .

[15]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[16]  Bastien Chopard,et al.  Multiparticle Lattice Gas Model for a Fluid: Application to Ballistic Annihilation , 1998 .

[17]  Werner,et al.  Fundamentally discrete stochastic model for wind ripple dynamics. , 1993, Physical review letters.

[18]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[19]  Bastien Chopard,et al.  Multiparticle Lattice Gas Automata For Reaction Diffusion Systems , 1994 .

[20]  Hugo Martinez Contribution à la modélisation du transport éolien de particules : mesures de profils de concentration en soufflerie diphasique , 1996 .

[21]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[22]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[23]  小林 大二,et al.  Studies of snow transport in low-level drifting snow , 1972 .

[24]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[25]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[26]  A. MALLOCK Waves in Sand and Snow , 1914, Nature.

[27]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[28]  B. Chopard,et al.  A lattice Boltzmann model for particle transport and deposition , 1998 .