Statistically optimal dynamic power management for streaming data

This paper presents a method that uses data buffers to create long periods of idleness to exploit power management. This method considers the power consumed by the buffers and assigns an energy penalty for buffer underflow. Our approach provides analytic formulas for calculating the optimal buffer sizes without subjective or heuristic decisions. We simulate four different hardware configurations with MPEG-1, MPEG-2, and MPEG-4 formats as a case study. Our results indicate that the optimal buffer size varies significantly for different data formats on different hardware. Simulation results indicate that 16 MB buffers are sufficient for MPEG-1, MPEG-2, and MPEG-4 video streams from a microdrive or a network card, but transfers from an IDE disk require buffer sizes ranging from 16 MB to 176 MB, depending on each video's statistical properties.

[1]  Mahmut T. Kandemir,et al.  Hardware and Software Techniques for Controlling DRAM Power Modes , 2001, IEEE Trans. Computers.

[2]  Margarida F. Jacome,et al.  Xtream-fit: an energy-delay efficient data memory subsystem for embedded media processing , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[3]  Niraj K. Jha,et al.  Static and dynamic variable voltage scheduling algorithms for real-time heterogeneous distributed embedded systems , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[4]  Yung-Hsiang Lu,et al.  Dynamic power management using data buffers , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[5]  Luca Benini,et al.  Dynamic power management for portable systems , 2000, MobiCom '00.

[6]  Yung-Hsiang Lu,et al.  Energy management using buffer memory for streaming data , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Luca Benini,et al.  Dynamic frequency scaling with buffer insertion for mixed workloads , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Soonhoi Ha,et al.  Dynamic voltage scheduling technique for low-power multimedia applications using buffers , 2001, ISLPED '01.

[9]  Massoud Pedram,et al.  Dynamic power management of complex systems using generalized stochastic Petri nets , 2000, DAC.

[10]  Hiroto Yasuura,et al.  Voltage scheduling problem for dynamically variable voltage processors , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[11]  Luca Benini,et al.  Dynamic power management for nonstationary service requests , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[12]  Mahmut T. Kandemir,et al.  Reducing Disk Power Consumption in Servers with DRPM , 2003, Computer.

[13]  Amin Vahdat,et al.  Managing energy and server resources in hosting centers , 2001, SOSP.

[14]  Anantha Chandrakasan,et al.  Upper bounds on the lifetime of sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[15]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[16]  Massoud Pedram,et al.  Dynamic power management in a mobile multimedia system with guaranteed quality-of-service , 2001, DAC '01.

[17]  John Watkinson The MPEG handbook : MPEG-1, MPEG-2, MPEG-4 , 2001 .

[18]  Luca Benini,et al.  Quantitative comparison of power management algorithms , 2000, Proceedings Design, Automation and Test in Europe Conference and Exhibition 2000 (Cat. No. PR00537).

[19]  Margaret Martonosi,et al.  Let caches decay: reducing leakage energy via exploitation of cache generational behavior , 2002, TOCS.

[20]  R. Faure,et al.  Introduction to operations research , 1968 .

[21]  Yung-Hsiang Lu,et al.  Dynamic power management for streaming data , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[22]  Allen C.-H. Wu,et al.  A predictive system shutdown method for energy saving of event-driven computation , 1997, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[23]  Luca Benini,et al.  Power aware network interface management for streaming multimedia , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[24]  Alvin R. Lebeck,et al.  Power aware page allocation , 2000, SIGP.

[25]  Luca Benini,et al.  Event-driven power management , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  Massoud Pedram,et al.  Dynamic power management based on continuous-time Markov decision processes , 1999, DAC '99.

[27]  Philip M. Long,et al.  Adaptive Disk Spindown via Optimal Rent-to-Buy in Probabilistic Environments , 1999, Algorithmica.

[28]  Mahmut T. Kandemir,et al.  Tuning garbage collection for reducing memory system energy in an embedded java environment , 2002, TECS.

[29]  J. Flinn,et al.  Energy-aware adaptation for mobile applications , 1999, SOSP.

[30]  Rajesh K. Gupta,et al.  System level online power management algorithms , 2000, DATE '00.

[31]  Luca Benini,et al.  Policy optimization for dynamic power management , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[32]  Luca Benini,et al.  A survey of design techniques for system-level dynamic power management , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[33]  Alok N. Choudhary,et al.  An integrated approach to reducing power dissipation in memory hierarchies , 2002, CASES '02.