A Gating Mechanism of the Serotonin 5-HT3 Receptor.

Our recently solved high-resolution structure of the serotonin 5-HT3 receptor (5-HT3R) delivered the first detailed structural insights for a mammalian pentameric ligand-gated ion channel. Based on this structure, we here performed a total of 2.8-μs all-atom molecular dynamics simulations to unravel at atomic detail how neurotransmitter binding on the extracellular domain induces sequential conformational transitions in the receptor, opening an ion channel and translating a chemical signal into electrical impulses across the membrane. We found that serotonin binding first induces distinct conformational fluctuations at the side chain of W156 in the highly conserved ligand-binding cage, followed by tilting-twisting movements of the extracellular domain which couple to the transmembrane TM2 helices, opening the hydrophobic gate at L260 and forming a continuous transmembrane water pathway. The structural transitions in the receptor's transmembrane part finally couple to the intracellular MA helix bundle, opening lateral ports for ion passage.

[1]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[2]  M. Bansal,et al.  HELANAL: A Program to Characterize Helix Geometry in Proteins , 2000, Journal of biomolecular structure & dynamics.

[3]  Guido Scarabelli,et al.  Kinesin-5 Allosteric Inhibitors Uncouple the Dynamics of Nucleotide, Microtubule, and Neck-Linker Binding Sites , 2014, Biophysical journal.

[4]  H. Lester,et al.  The structural basis of function in Cys-loop receptors , 2010, Quarterly Reviews of Biophysics.

[5]  David R. Westhead,et al.  Calculation of Helix Packing Angles in Protein Structures , 2003, Bioinform..

[6]  Marc Baaden,et al.  One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue , 2010, Proceedings of the National Academy of Sciences.

[7]  S. Sine,et al.  Number and Locations of Agonist Binding Sites Required to Activate Homomeric Cys-Loop Receptors , 2009, The Journal of Neuroscience.

[8]  Thomas Wieland,et al.  Alignment-Annotator web server: rendering and annotating sequence alignments , 2014, Nucleic Acids Res..

[9]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[10]  N. Unwin,et al.  Structure and superorganization of acetylcholine receptor–rapsyn complexes , 2013, Proceedings of the National Academy of Sciences.

[11]  Matthieu Chavent,et al.  Bendix: intuitive helix geometry analysis and abstraction , 2012, Bioinform..

[12]  P. Paoletti,et al.  Synaptic neurotransmitter-gated receptors. , 2012, Cold Spring Harbor perspectives in biology.

[13]  Andrei L. Lomize,et al.  Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes , 2011, J. Chem. Inf. Model..

[14]  J. Baenziger,et al.  Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. , 2013, Structure.

[15]  T. Tomizaki,et al.  X-ray structure of the mouse serotonin 5-HT3 receptor , 2014, Nature.

[16]  John H. Morris,et al.  structureViz: linking Cytoscape and UCSF Chimera , 2007, Bioinform..

[17]  Surajit Banerjee,et al.  X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors , 2014, Nature.

[18]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[19]  Sukjoon Yoon,et al.  QHELIX: A Computational Tool for the Improved Measurement of Inter-Helical Angles in Proteins , 2007, The protein journal.

[20]  Evan Bolton,et al.  PubChem's BioAssay Database , 2011, Nucleic Acids Res..

[21]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[22]  M. Delarue,et al.  Crystallographic studies of pharmacological sites in pentameric ligand-gated ion channels. , 2015, Biochimica et biophysica acta.

[23]  Antoine Taly,et al.  Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. , 2012, Chemical reviews.

[24]  J. A. Peters,et al.  Novel structural determinants of single channel conductance and ion selectivity in 5‐hydroxytryptamine type 3 and nicotinic acetylcholine receptors , 2010, The Journal of physiology.

[25]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[26]  Oliver Beckstein,et al.  A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor , 2005, Physical biology.

[27]  H. Vogel,et al.  Correlated Optical and Electrical Single‐Molecule Measurements Reveal Conformational Diffusion from Ligand Binding to Channel Gating in the Nicotinic Acetylcholine Receptor , 2011, Chembiochem : a European journal of chemical biology.

[28]  M. Sansom,et al.  Hydrophobic gating in ion channels. , 2015, Journal of molecular biology.

[29]  J. Changeux Protein dynamics and the allosteric transitions of pentameric receptor channels , 2014, Biophysical Reviews.

[30]  Z. Luthey-Schulten,et al.  Dynamical networks in tRNA:protein complexes , 2009, Proceedings of the National Academy of Sciences.

[31]  J. Changeux,et al.  Structure and pharmacology of pentameric receptor channels: from bacteria to brain. , 2012, Structure.

[32]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[33]  Amanda L. Jonsson,et al.  Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. , 2013, Journal of the American Chemical Society.

[34]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[35]  R. Dutzler,et al.  Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel , 2009, Nature.

[36]  David Calkins,et al.  Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution , 2010, J. Comput. Aided Mol. Des..

[37]  Rommie E. Amaro,et al.  Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis , 2014, Journal of chemical theory and computation.

[38]  Leo S. D. Caves,et al.  Bio3d: an R package for the comparative analysis of protein structures , 2006, Bioinform..

[39]  Massimiliano Bonomi,et al.  Linking well-tempered metadynamics simulations with experiments. , 2010, Biophysical journal.

[40]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[41]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[42]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[43]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[44]  Anthony Auerbach,et al.  Agonist activation of a nicotinic acetylcholine receptor , 2015, Neuropharmacology.

[45]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[46]  H. Stahlberg,et al.  The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles. , 2016, Structure.

[47]  D. Bertrand,et al.  Nicotinic acetylcholine receptors: from basic science to therapeutics. , 2013, Pharmacology & therapeutics.

[48]  A. Smit,et al.  Structural basis of ligand recognition in 5-HT3 receptors , 2012, EMBO reports.

[49]  G. Hummer,et al.  Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction. , 2012, Biophysical journal.

[50]  Antoine Taly,et al.  A gating mechanism of pentameric ligand-gated ion channels , 2013, Proceedings of the National Academy of Sciences.

[51]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[52]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[53]  J. Walstab,et al.  5-HT(3) receptors: role in disease and target of drugs. , 2010, Pharmacology & therapeutics.

[54]  J. Changeux,et al.  X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel , 2011, Nature.

[55]  J. Changeux,et al.  X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation , 2009, Nature.

[56]  Nadezhda T. Doncheva,et al.  Topological analysis and interactive visualization of biological networks and protein structures , 2012, Nature Protocols.

[57]  S. Lummis 5-HT3 Receptors , 2012, The Journal of Biological Chemistry.

[58]  A. R. Aricescu,et al.  Crystal structure of a human GABAA receptor , 2014, Nature.

[59]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[60]  N. Unwin Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes , 2013, Quarterly Reviews of Biophysics.

[61]  E. Kirkness,et al.  A cytoplasmic region determines single-channel conductance in 5-HT3 receptors , 2003, Nature.

[62]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[63]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[64]  Christopher G. Tate,et al.  Overcoming barriers to membrane protein structure determination , 2011, Nature Biotechnology.

[65]  J. P. Grossman,et al.  Biomolecular simulation: a computational microscope for molecular biology. , 2012, Annual review of biophysics.

[66]  S. Sine,et al.  Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors , 1994, Neuron.

[67]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.