The Maximum Independent Sets of de Bruijn Graphs of Diameter 3

The nodes of the de Bruijn graph $B(d,3)$ consist of all strings of length $3$, taken from an alphabet of size $d$, with edges between words which are distinct substrings of a word of length $4$. We give an inductive characterization of the maximum independent sets of the de Bruijn graphs $B(d,3)$ and for the de Bruijn graph of diameter three with loops removed, for arbitrary alphabet size. We derive a recurrence relation and an exponential generating function for their number. This recurrence allows us to construct exponentially many comma-free codes of length 3 with maximal cardinality.

[1]  Justin Pearson,et al.  Comma-free codes , 2003 .

[2]  Simone Severini Universal quantum computation with unlabelled qubits , 2006 .

[3]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[4]  M. Berger,et al.  Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors , 2009, Nature Protocols.

[5]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. H. Jiggs,et al.  Regent Results in Comma-Free Codes , 1963, Canadian Journal of Mathematics.

[7]  Karl Aberer,et al.  On de Bruijn routing in distributed hash tables: there and back again , 2004, Proceedings. Fourth International Conference on Peer-to-Peer Computing, 2004. Proceedings..

[8]  F H Crick,et al.  CODES WITHOUT COMMAS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Solomon W. Golomb,et al.  A New Result on Comma-Free Codes of Even Word-Length , 1987, Canadian Journal of Mathematics.

[10]  Edgardo Ugalde An alternative construction of normal numbers , 2000 .

[11]  Willard L. Eastman,et al.  On the construction of comma-free codes , 1965, IEEE Trans. Inf. Theory.

[12]  Alexander L. Churchill Restrictions and Generalizations on Comma-Free Codes , 2009, Electron. J. Comb..

[13]  Biswanath Mukherjee,et al.  Optical Communication Networks , 1997 .

[14]  Nicolas Lichiardopol,et al.  Independence number of de Bruijn graphs , 2006, Discret. Math..