Engineering metallic nanostructures for surface plasmon resonance sensing

UNiversity of Minnesota Ph.D. dissertation. August 2010. Major: Electrical Engineering. Advisor: Professor Sang-Hyun Oh. 1 computer file (PDF); xii, 143 pages. Ill. (some col), appendices A-B.

[1]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[2]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[3]  D. Mills Attenuation of surface polaritons by surface roughness , 1975 .

[4]  Jean-Claude Weeber,et al.  Launching and decoupling surface plasmons via micro-gratings , 2003 .

[5]  Harry A. Atwater The promise of plasmonics. , 2007 .

[6]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[7]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[8]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[9]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[10]  V. Shalaev Optical negative-index metamaterials , 2007 .

[11]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[12]  Michael Sarrazin,et al.  Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes , 2003, physics/0311013.

[13]  Sang‐Hyun Oh,et al.  Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. , 2009, Lab on a chip.

[14]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[15]  H. Lezec,et al.  Multiple paths to enhance optical transmission through a single subwavelength slit. , 2003, Physical review letters.

[16]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[17]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[18]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[19]  G Dolling,et al.  Realization of a three-functional-layer negative-index photonic metamaterial. , 2007, Optics letters.

[20]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[21]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[22]  Xiang Zhang,et al.  Compressing surface plasmons for nano-scale optical focusing. , 2009, Optics express.

[23]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[24]  M Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009, Optical Data Storage.

[25]  Yeshaiahu Fainman,et al.  Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor , 2007 .

[26]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[27]  Paul Yager,et al.  Wavelength-tunable surface plasmon resonance microscope , 2003 .

[28]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[29]  Hyungsoon Im,et al.  Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. , 2010, ACS nano.

[30]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[31]  Sang-Hyun Oh,et al.  Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors , 2007 .

[32]  D. Heitmann,et al.  SURFACE-PLASMON-ENHANCED TRANSMISSION THROUGH METALLIC GRATINGS , 1998 .

[33]  Thomas W. Ebbesen,et al.  Crucial role of metal surface in enhanced transmission through subwavelength apertures , 2000 .

[34]  Green Nm,et al.  Avidin and streptavidin. , 1990 .

[35]  J. P. Woerdman,et al.  Fano-type interpretation of red shifts and red tails in hole array transmission spectra , 2003, physics/0401054.

[36]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[37]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[38]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[39]  Y. Shen,et al.  Surface properties probed by second-harmonic and sum-frequency generation , 1989, Nature.

[40]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[41]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[42]  William L. Barnes,et al.  Photonic surfaces for surface-plasmon polaritons , 1997 .

[43]  R. Gordon,et al.  Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film , 2007 .

[44]  Olga Lyandres,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[45]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[46]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[47]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[48]  J Bravo-Abad,et al.  Enhanced millimeter-wave transmission through subwavelength hole arrays. , 2004, Optics letters.

[49]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[50]  P. Stark,et al.  Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. , 2005, Methods.

[51]  B. Mizaikoff,et al.  Continuous surface enhanced Raman spectroscopy for the detection of trace organic pollutants in aqueous systems , 1997 .

[52]  A. Bouhelier,et al.  Submicrometer in-plane integrated surface plasmon cavities. , 2007, Nano letters.

[53]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[54]  Thomas W. Ebbesen,et al.  Surface-plasmon-enhanced transmission through hole arrays in Cr films , 1999 .

[55]  Teri W Odom,et al.  Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. , 2006, Nano letters.

[56]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[57]  James V. Coe,et al.  Use of the Extraordinary Infrared Transmission of Metallic Subwavelength Arrays To Study the Catalyzed Reaction of Methanol to Formaldehyde on Copper Oxide , 2004 .

[58]  Jon Orloff,et al.  High‐resolution focused ion beams , 1993 .

[59]  Tao Tao,et al.  Focused ion beam induced deposition of platinum , 1990 .

[60]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[61]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[62]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[63]  F. Dill Optical lithography , 1975, IEEE Transactions on Electron Devices.

[64]  L. Nordheim Zur Elektronentheorie der Metalle. II , 1931 .

[65]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[66]  Hyungsoon Im,et al.  Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors , 2007 .

[67]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[68]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[69]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[70]  Daniel A. Higgins,et al.  Optical second harmonic generation as a probe of surface chemistry , 1994 .

[71]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[72]  Hyungsoon Im,et al.  Plasmonic nanohole arrays for real-time multiplex biosensing , 2008, NanoScience + Engineering.

[73]  Ewold Verhagen,et al.  Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy , 2006 .

[74]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[75]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[76]  Wolfgang Knoll,et al.  Surface–plasmon microscopy , 1988, Nature.

[77]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[78]  Teri W. Odom,et al.  Mesoscale metallic pyramids with nanoscale tips. , 2005, Nano letters.

[79]  Edward A. Stern,et al.  Surface Plasma Oscillations of a Degenerate Electron Gas , 1959 .

[80]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[81]  Hyungsoon Im,et al.  Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. , 2008, Optics express.

[82]  D. Sinton,et al.  On-chip surface-based detection with nanohole arrays. , 2007, Analytical chemistry.

[83]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[84]  Alexandre G. Brolo,et al.  Apex-Enhanced Raman Spectroscopy Using Double-Hole Arrays in a Gold Film , 2007 .

[85]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[86]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[87]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[88]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[89]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[90]  R. Marqués,et al.  Analytical theory of extraordinary optical transmission through realistic metallic screens. , 2010, Optics express.

[91]  Reuven Gordon Bethe's aperture theory for arrays , 2007 .

[92]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[93]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[94]  Y. Fainman,et al.  High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. , 2006, Optics letters.

[95]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[96]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[97]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[98]  Qiwen Zhan,et al.  Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. , 2009, Nano letters.

[99]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[100]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[101]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[102]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[103]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[104]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[105]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[106]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[107]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[108]  Bhupinder Bhullar,et al.  Self-Assembling Protein Microarrays , 2004, Science.

[109]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[110]  Alexandre G. Brolo,et al.  Nanohole-Enhanced Raman Scattering , 2004 .

[111]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[112]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[113]  Yuen-Ron Shen,et al.  Surface-enhanced Second-harmonic Generation , 1981 .

[114]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[115]  Luis Martín-Moreno,et al.  Nanofocusing with channel plasmon polaritons. , 2009, Nano letters.

[116]  Ann Roberts,et al.  Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen , 1987 .

[117]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[118]  Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces , 2005, cond-mat/0508041.

[119]  Emily A. Smith,et al.  Surface Plasmon Resonance Imaging as a Tool to Monitor Biomolecular Interactions in an Array Based Format , 2003, Applied spectroscopy.

[120]  William L. Barnes,et al.  Only Skin Deep , 2004, Science.

[121]  W. David Wilson,et al.  Analyzing Biomolecular Interactions , 2002, Science.

[122]  E. Eliel,et al.  Plasmon-assisted two-slit transmission: Young's experiment revisited. , 2005, Physical review letters.

[123]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[124]  J. Sáenz,et al.  Full transmission through perfect-conductor subwavelength hole arrays. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[126]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[127]  J. Melngailis Focused ion beam technology and applications , 1987 .

[128]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[129]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[130]  N. V. van Hulst,et al.  Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. , 2004, Physical review letters.

[131]  C. Haynes,et al.  Surface-enhanced Raman scattering substrates fabricated using electroless plating on polymer-templated nanostructures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[132]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[133]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[134]  M. Haraguchi,et al.  Propagation Length of Surface Plasmon Polaritons Propagating along Air-Metal Interface , 1994 .

[135]  Hyungsoon Im,et al.  Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. , 2009, Analytical chemistry.

[136]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[137]  H. Lezec,et al.  Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy , 2008 .

[138]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .