Achieving Reliable CoSb3 Based Thermoelectric Joints with Low Contact Resistivity Using a High-entropy Alloy Diffusion Barrier Layer

[1]  Hyoung Seop Kim,et al.  A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing , 2021, Materials & Design.

[2]  P. Schaaf,et al.  Ultrafast formation of single phase B2 AlCoCrFeNi high entropy alloy films by reactive Ni/Al multilayers as heat source , 2021 .

[3]  Heping Xie,et al.  Enhanced Interfacial Reliability and Mechanical Strength of CoSb3-Based Thermoelectric Joints with Rationally Designed Diffusion-Barrier Materials of Ti-Based Alloys. , 2020, ACS applied materials & interfaces.

[4]  B. Cho,et al.  Thermal diffusion barrier metallization based on Co–Mo powder-mixed composites for n-type skutterudite ((Mm,Sm)yCo4Sb12) thermoelectric devices , 2020 .

[5]  G. J. Snyder,et al.  Microstructure and composition engineering Yb single-filled CoSb3 for high thermoelectric and mechanical performances , 2019 .

[6]  L. Vitos,et al.  Theoretical investigation of the phase stability and elastic properties of TiZrHfNb-based high entropy alloys , 2019, Materials & Design.

[7]  Shengqiang Bai,et al.  Thermoelectric interface materials: A perspective to the challenge of thermoelectric power generation module , 2019, Journal of Materiomics.

[8]  David Fuks,et al.  TiNiSn half-Heusler crystals grown from metallic flux for thermoelectric applications , 2019, Journal of Alloys and Compounds.

[9]  Gao Min,et al.  Skutterudite Thermoelectric Modules with High Volume-Power-Density: Scalability and Reproducibility , 2018, ACS Applied Energy Materials.

[10]  I. Steinbach,et al.  Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys , 2018, Acta Materialia.

[11]  Chung-Yul Yoo,et al.  High-Power-Density Skutterudite-Based Thermoelectric Modules with Ultralow Contact Resistivity Using Fe–Ni Metallization Layers , 2018 .

[12]  Sinn-wen Chen,et al.  Interfacial reactions at the joints of CoSb3-based thermoelectric devices , 2017 .

[13]  S. Yamanaka,et al.  Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure , 2016 .

[14]  Y. Gelbstein,et al.  Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds , 2016 .

[15]  C. Chen,et al.  High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties , 2016 .

[16]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[17]  G. J. Snyder,et al.  Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics , 2015 .

[18]  陈立东,et al.  Yb 0.3 Co 4 Sb 12 /Mo-Cu热电元件的界面结构与界面电阻 , 2015 .

[19]  Xugui Xia,et al.  Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature , 2014 .

[20]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[21]  K. Goodson,et al.  Material and manufacturing cost considerations for thermoelectrics , 2014 .

[22]  Qi Wang,et al.  A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications , 2014 .

[23]  Takahiro Ochi,et al.  Power-Generation Performance and Durability of a Skutterudite Thermoelectric Generator , 2014, Journal of Electronic Materials.

[24]  G. Lu,et al.  Interfacial reaction between n- and p-type thermoelectric materials and SAC305 solders , 2013 .

[25]  Feng Qiu,et al.  Towards high-performance polymer-based thermoelectric materials , 2013 .

[26]  Masaaki Kikuchi,et al.  Thermoelectric Properties of Multifilled Skutterudites with La as the Main Filler , 2013, Journal of Electronic Materials.

[27]  K. Takenaka,et al.  Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion , 2012 .

[28]  Takahiro Ochi,et al.  Development of Skutterudite Thermoelectric Materials and Modules , 2012, Journal of Electronic Materials.

[29]  Krzysztof Tomasz Wojciechowski,et al.  High temperature CoSb3-Cu junctions , 2011, Microelectron. Reliab..

[30]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[31]  Lidong Chen,et al.  Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging , 2009 .

[32]  Lidong Chen,et al.  High temperature reliability evaluation of CoSb3/electrode thermoelectric joints , 2009 .

[33]  Jien-Wei Yeh,et al.  Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon , 2008 .

[34]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[35]  Shengqiang Bai,et al.  Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer , 2004 .

[36]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[37]  J. H. Webb Thermoelectricity: Science and Engineering. , 1962 .

[38]  J. Yeh Overview of High-Entropy Alloys , 2016 .

[39]  M. Dariel,et al.  Nucleation of nanosize particles following the spinodal decomposition in the pseudo-ternary Ge0.6Sn0.1Pb0.3Te compound , 2010 .