Random Generators and Normal Numbers

Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants [Bailey and Crandall 01], we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form Σ 1/(b mi c ni) for certain sequences (mi), (ni) of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime b, c > 1 the constant α b,c = Σ n=c,c 2,c 3 , … 1/(nb n ) is b-normal, thus generalizing the Stoneham class of normals [Stoneham 73a]. Our approach also reproves b-normality for the Korobov class [Korobov 90] β b, c d , for which the summation index n above runs instead over powers cd , cd2 , cd3 , … with d > 1. Eventually we describe an uncountable class of explicit normals that succumb to the PRNG approach. Numbers of the α,β classes share with fundamental constants such as π, log 2 the property that isolated digits can be directly calculated, but for these new classes such computation tends to be surprisingly rapid. For example, we find that the googol-th (i.e., 10100 -th) binary bit of α2,3 is 0. We also present a collection of other results—such as digit-density results and irrationality proofs based on PRNG ideas—for various special numbers.

[1]  Jonathan M. Borwein,et al.  Computational strategies for the Riemann zeta function , 2000 .

[2]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[3]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[4]  Robert L. Devaney,et al.  Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets , 1995 .

[5]  P. Ribenboim The new book of prime number records , 1996 .

[6]  David H. Bailey,et al.  An Ergodic Proof that Rational Times Normal is Normal , 2003 .

[7]  R. G. Stoneham On absolute (j, ε)-normality in the rational fractions with applications to normal numbers , 1973 .

[8]  R. G. Stoneham On a sequence of (j, ε)-normal approximations to π/4 and the Brouwer conjecture , 1983 .

[9]  Jeffrey C. Lagarias On the Normality of Arithmetical Constants , 2001, Exp. Math..

[10]  Douglas Bowman,et al.  A New Generalization of Davison''s Theorem , 1988 .

[11]  Paul Erdős,et al.  On the Irrationality of Certain Series , 1974 .

[12]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[13]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[14]  David J. Broadhurst,et al.  Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?(5) , 1998 .

[15]  David H. Bailey,et al.  On the Random Character of Fundamental Constant Expansions , 2001, Exp. Math..

[16]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[17]  A. McD. Mercer A Note on Some Irrational Decimal Fractions , 1994 .

[18]  Shan Zun A note on irrationality of some numbers , 1987 .

[19]  N M Korobov ON THE DISTRIBUTION OF DIGITS IN PERIODIC FRACTIONS , 1972 .

[20]  A. N. Korobov Continued fractions of certain normal numbers , 1990 .

[21]  D. Bowman Approximation of ⌊nα + s⌋ and the Zero of {nα + s} , 1995 .

[22]  R. G. Stoneham Normal recurring decimals, normal periodic systems, (j,ε) - normality, and normal numbers , 1976 .

[23]  Harald Niederreiter,et al.  On an irrationality theorem of Mahler and Bundschuh , 1986 .

[24]  J. Davison,et al.  A series and its associated continued fraction , 1977 .

[25]  R. G. Stoneham On the uniform ε-distribution of residues within the periods of rational fractions with applications to normal numbers , 1973 .

[26]  N. S. Barnett,et al.  Private communication , 1969 .

[27]  Janusz Zalewski,et al.  Topics in advanced scientific computation , 1996, IEEE Parallel & Distributed Technology: Systems & Applications.

[28]  N. M. Korobov Exponential Sums and their Applications , 1992 .

[29]  Jonathan M. Borwein,et al.  On the Generating Function of the Integer Part: [nα + γ] , 1993 .

[30]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[31]  K. Mahler On some irrational decimal fractions , 1981 .

[32]  I. Good Normal Recurring Decimals , 1946 .

[33]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[34]  Mordechay B. Levin On the discrepancy estimate of normal numbers , 1999 .

[35]  D. Champernowne The Construction of Decimals Normal in the Scale of Ten , 1933 .

[36]  R. G. Stoneham Some further results concerning (j,ε) -normality in the rationals , 1974 .

[37]  Let P Erl On Arithmetical Properties of Lambert Series , 2022 .

[38]  L. V. Danilov Some classes of transcendental numbers , 1972 .

[39]  R. G. Stoneham Errata to the paper "A general arithmetic construction of transcendental non-Liouville normal numbers from rational fractions" , 1970 .

[40]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[41]  S. Lang,et al.  Introduction to Diophantine Approximations , 1995 .

[42]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[43]  David Bailey,et al.  On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..

[44]  Igor E. Shparlinski,et al.  Some doubly exponential sums over Z[m] , 2002 .

[45]  Igor E. Shparlinski,et al.  On the distribution of the power generator , 2001, Math. Comput..

[46]  D. Ridout Rational approximations to algebraic numbers , 1957 .

[47]  William W. Adams,et al.  A remarkable class of continued fractions , 1977 .

[48]  L. Miles,et al.  2000 , 2000, RDH.

[49]  P. Erdös,et al.  Note on normal numbers , 1946 .

[50]  Igor E. Shparlinski,et al.  Period of the power generator and small values of Carmichael's function , 2001, Math. Comput..

[51]  K. F. Roth,et al.  Rational approximations to algebraic numbers , 1955 .

[52]  David H. Bailey,et al.  Analysis of PSLQ, an integer relation finding algorithm , 1999, Math. Comput..

[53]  P. E. Böhmer,et al.  Über die Transzendenz gewisser dyadischer Brüche , 1927 .