TRISK: A local features extraction framework for texture-plus-depth content matching

Abstract In this paper we present a new complete detector–descriptor framework for local features extraction from grayscale texture-plus-depth images. It is designed by putting together a locally normalized binary descriptor and the popular AGAST corner detector modified to incorporate the depth map into the keypoint detection process. With these new local features, we target image matching applications when significant out-of-plane rotations and viewpoint position changes are present in the input data. Our approach is designed to perform on RGBD images acquired with low-cost sensors such as Kinect without any complex depth map preprocessing such as denoising or inpainting. We show improved results with respect to several other highly competitive local image features through both a classic local feature evaluation procedure and an illustrative application scenario. Moreover, the proposed method requires low computational effort.

[1]  J. Paul Siebert,et al.  Local feature extraction and matching on range images: 2.5D SIFT , 2009, Comput. Vis. Image Underst..

[2]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[3]  Darius Burschka,et al.  Adaptive and Generic Corner Detection Based on the Accelerated Segment Test , 2010, ECCV.

[4]  Michael Beetz,et al.  Distinctive texture features from perspective-invariant keypoints , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[5]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[6]  Jiwen Lu,et al.  Context-Aware Local Binary Feature Learning for Face Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[8]  Radu Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, CVPR.

[9]  Jan-Michael Frahm,et al.  3D model matching with Viewpoint-Invariant Patches (VIP) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Vincent Lepetit,et al.  Boosting Binary Keypoint Descriptors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[12]  Shiguang Shan,et al.  Learning Multifunctional Binary Codes for Both Category and Attribute Oriented Retrieval Tasks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Mario Fernando Montenegro Campos,et al.  On the development of a robust, fast and lightweight keypoint descriptor , 2013, Neurocomputing.

[14]  Giuseppe Valenzise,et al.  Local visual features extraction from texture+depth content based on depth image analysis , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[15]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[16]  Wolfram Burgard,et al.  Point feature extraction on 3D range scans taking into account object boundaries , 2011, 2011 IEEE International Conference on Robotics and Automation.

[17]  Haibin Ling,et al.  Deformation invariant image matching , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[20]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[21]  João Ascenso,et al.  Evaluation of low-complexity visual feature detectors and descriptors , 2013, 2013 18th International Conference on Digital Signal Processing (DSP).

[22]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[23]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[24]  Francesc Moreno-Noguer,et al.  Deformation and illumination invariant feature point descriptor , 2011, CVPR 2011.

[25]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[26]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[27]  Giuseppe Valenzise,et al.  Improving distinctiveness of brisk features using depth maps , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[28]  Horst Bischof,et al.  A novel performance evaluation method of local detectors on non-planar scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[29]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Marco Tagliasacchi,et al.  Briskola: BRISK optimized for low-power ARM architectures , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[31]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[33]  Q. M. Jonathan Wu,et al.  A comparative experimental study of image feature detectors and descriptors , 2015, Machine Vision and Applications.

[34]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Giuseppe Valenzise,et al.  A scale space for texture+depth images based on a discrete laplacian operator , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[36]  Federico Tombari,et al.  A combined texture-shape descriptor for enhanced 3D feature matching , 2011, 2011 18th IEEE International Conference on Image Processing.

[37]  Jan-Michael Frahm,et al.  Comparative Evaluation of Binary Features , 2012, ECCV.

[38]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[39]  Le Xiao,et al.  SIPF: Scale invariant point feature for 3D point clouds , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[40]  Óscar Martínez Mozos,et al.  A comparative evaluation of interest point detectors and local descriptors for visual SLAM , 2010, Machine Vision and Applications.

[41]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[42]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[43]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[44]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[45]  Hao Guan,et al.  BRISKS: Binary Features for Spherical Images on a Geodesic Grid , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[47]  Jan-Michael Frahm,et al.  Feature tracking and matching in video using programmable graphics hardware , 2007, Machine Vision and Applications.

[48]  Giuseppe Valenzise,et al.  An image smoothing operator for fast and accurate scale space approximation , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[49]  Francesc Moreno-Noguer,et al.  FINDDD: A fast 3D descriptor to characterize textiles for robot manipulation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Reinhard Koch,et al.  Perspectively Invariant Normal Features , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[51]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Jiwen Lu,et al.  Learning Deep Binary Descriptor with Multi-Quantization , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[54]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[56]  Wei Li,et al.  Fully affine invariant SURF for image matching , 2012, Neurocomputing.

[57]  Giuseppe Valenzise,et al.  Keypoint Detection in RGBD Images Based on an Anisotropic Scale Space , 2016, IEEE Transactions on Multimedia.

[58]  Krystian Mikolajczyk,et al.  Binary Online Learned Descriptors , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Giuseppe Valenzise,et al.  Keypoint detection in RGBD images based on an efficient viewpoint-covariant multiscale representation , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).