6-regular partitions: new combinatorial properties, congruences, and linear inequalities

We consider the number of the 6-regular partitions of n , b 6 ( n ), and give infinite families of congruences modulo 3 (in arithmetic progression) for b 6 ( n ). We also consider the number of the partitions of n into distinct parts not congruent to ± 2 modulo 6, Q 2 ( n ), and investigate connections between b 6 ( n ) and Q 2 ( n ) providing new combinatorial interpretations for these partition functions. In this context, we discover new infinite families of linear inequalities involving Euler’s partition function p ( n ). Infinite families of linear inequalities involving the 6-regular partition function b 6 ( n ) and the distinct partition function Q 2 ( n ) are proposed as open problems.

[1]  C. Ballantine,et al.  PED and POD partitions: Combinatorial proofs of recurrence relations , 2023, Discret. Math..

[2]  Ernest X. W. Xia,et al.  Truncated sums for the partition function and a problem of Merca , 2021, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[3]  Mircea Merca,et al.  Almost 3-regular overpartitions , 2021, The Ramanujan Journal.

[4]  Mircea Merca,et al.  Linear inequalities concerning partitions into distinct parts , 2021, The Ramanujan Journal.

[5]  M. Merca Generalized Lambert Series and Euler’s Pentagonal Number Theorem , 2021 .

[6]  M. Merca ON THE SUM OF PARTS IN THE PARTITIONS OF n INTO DISTINCT PARTS , 2020, Bulletin of the Australian Mathematical Society.

[7]  M. Merca,et al.  On the sum of parts with multiplicity at least 2 in all the partitions of n , 2020 .

[8]  M. Merca Polygonal numbers and Rogers–Ramanujan–Gordon theorem , 2020 .

[9]  M. Merca Rank partition functions and truncated theta identities , 2020, Applicable Analysis and Discrete Mathematics.

[10]  Bernadette Hoey,et al.  Amanda , 2020, Who Calls the Tune?.

[11]  M. Merca On the partitions into distinct parts and odd parts , 2020, Quaestiones Mathematicae.

[12]  N. A. Smoot On the computation of identities relating partition numbers in arithmetic progressions with eta quotients: An implementation of Radu's algorithm , 2020, J. Symb. Comput..

[13]  M. Merca,et al.  A general method for proving the non-trivial linear homogeneous partition inequalities , 2020, The Ramanujan Journal.

[14]  M. Merca,et al.  On identities of Watson type , 2019, Ars Math. Contemp..

[15]  M. Merca,et al.  A Truncated Theta Identity of Gauss and Overpartitions into Odd Parts , 2019, Annals of Combinatorics.

[16]  M. Merca On Two Truncated Quintuple Series Theorems , 2019, Exp. Math..

[17]  M. Merca,et al.  Combinatorial proof of the minimal excludant theorem , 2019, 1908.06789.

[18]  Mircea Merca,et al.  Truncated Theta Series and Rogers-Ramanujan Functions , 2019, Exp. Math..

[19]  Mircea Merca,et al.  Combinatorial proofs of two truncated theta series theorems , 2018, J. Comb. Theory, Ser. A.

[20]  Liuquan Wang Arithmetic properties of 7-regular partitions , 2018 .

[21]  J. Katriel Asymptotically trivial linear homogeneous partition inequalities , 2018 .

[22]  George E. Andrews,et al.  Truncated theta series and a problem of Guo and Zeng , 2018, J. Comb. Theory, Ser. A.

[23]  Liuquan Wang Congruences for 5-regular partitions modulo powers of 5 , 2017 .

[24]  Qing-Hu Hou,et al.  Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 , 2015, Adv. Appl. Math..

[25]  M. Merca A generalization of Euler’s pentagonal number recurrence for the partition function , 2015 .

[26]  Ernest X. W. Xia Congruences for some l-regular partitions modulo l , 2015 .

[27]  Ernest X. W. Xia,et al.  Parity results for 9-regular partitions , 2014 .

[28]  John J. B. Webb,et al.  Infinite families of infinite families of congruences for k-regular partitions , 2014 .

[29]  Nancy S. S. Gu,et al.  Arithmetic properties of ℓ-regular partitions , 2013, Adv. Appl. Math..

[30]  George E. Andrews,et al.  The truncated pentagonal number theorem , 2012, J. Comb. Theory, Ser. A.

[31]  Jiang Zeng,et al.  Two truncated identities of Gauss , 2012, J. Comb. Theory, Ser. A.

[32]  Mircea Merca,et al.  Fast Algorithm for Generating Ascending Compositions , 2012, J. Math. Model. Algorithms.

[33]  John J. B. Webb Arithmetic of the 13-regular partition function modulo 3 , 2011 .

[34]  James A. Sellers,et al.  Arithmetic properties of partitions with even parts distinct , 2010 .

[35]  James A. Sellers,et al.  ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS , 2009, Bulletin of the Australian Mathematical Society.

[36]  David Penniston ARITHMETIC OF ℓ-REGULAR PARTITION FUNCTIONS , 2008 .

[37]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[38]  M. Merca,et al.  The minimal excludant and colored partitions , 2020 .

[39]  G. Andrews,et al.  On the Number of Even Parts in All Partitions of n into Distinct Parts , 2020 .

[40]  George E. Andrews,et al.  The Minimal Excludant in Integer Partitions , 2020, J. Integer Seq..

[41]  David Furcy,et al.  Congruences for ℓ-regular partition functions modulo 3 , 2012 .

[42]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .

[43]  David Penniston 3-REGULAR PARTITIONS AND A MODULAR K3 SURFACE , 2004 .

[44]  David Penniston The p a -Regular Partition Function Modulo p j , 2002 .

[45]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[46]  L. Carlitz,et al.  A simple proof of the quintuple product identity , 1972 .

[47]  Mathukumalli Vidyasagar,et al.  On Watson’s quintuple product identity , 1970 .