WITHDRAWN: I2VM: Incremental import vector machines☆☆☆

[1]  Johan A. K. Suykens,et al.  Multi-class kernel logistic regression: a fixed-size implementation , 2007, IJCNN.

[2]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[3]  Zhihua Zhang,et al.  Bayesian Generalized Kernel Mixed Models , 2011, J. Mach. Learn. Res..

[4]  Horst Bischof,et al.  Why to Combine Reconstructive and Discriminative Information for Incremental Subspace Learning , 2006 .

[5]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[6]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Josef Kittler,et al.  Incremental Linear Discriminant Analysis Using Sufficient Spanning Set Approximations , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Alexander J. Smola,et al.  Online learning with kernels , 2001, IEEE Transactions on Signal Processing.

[9]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[10]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[11]  Lothar Hotz,et al.  The Role of Sequences for Incremental Learning , 2018, ICAART.

[12]  Jun Zheng,et al.  An Online Incremental Learning Support Vector Machine for Large-scale Data , 2010, ICANN.

[13]  Masataka Goto,et al.  An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[14]  S. J. Moss,et al.  Performance of the NASA Laser Ranging System in Satellite Tracking , 1971 .

[15]  Christopher Joseph Pal,et al.  Multi-Conditional Learning: Generative/Discriminative Training for Clustering and Classification , 2006, AAAI.

[16]  Ribana Roscher,et al.  Incremental Import Vector Machines for Classifying Hyperspectral Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Josep Roure Alcobé,et al.  A Buffering Strategy to Avoid Ordering Effects in Clustering , 1998, ECML.

[18]  Frédéric Achard,et al.  Pre-processing of a sample of multi-scene and multi-date Landsat imagery used to monitor forest cover changes over the tropics , 2011 .

[19]  Ralf Klinkenberg,et al.  Boosting classifiers for drifting concepts , 2007, Intell. Data Anal..

[20]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[22]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[23]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[24]  G. Cawley,et al.  Efficient model selection for kernel logistic regression , 2004, ICPR 2004.

[25]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[27]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[28]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[29]  Tom Minka,et al.  Principled Hybrids of Generative and Discriminative Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[31]  Rajat Raina,et al.  Classification with Hybrid Generative/Discriminative Models , 2003, NIPS.

[32]  Ichiro Takeuchi,et al.  Multiple Incremental Decremental Learning of Support Vector Machines , 2009, IEEE Transactions on Neural Networks.

[33]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[34]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  Tat-Jun Chin,et al.  Incremental Kernel Principal Component Analysis , 2007, IEEE Transactions on Image Processing.

[36]  Silvia Scarpetta,et al.  Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Martial Hebert,et al.  Discriminative Random Fields , 2006, International Journal of Computer Vision.

[38]  Volker Roth,et al.  Probabilistic Discriminative Kernel Classifiers for Multi-class Problems , 2001, DAGM-Symposium.

[39]  Uwe Weidner,et al.  Support vector machines, import vector machines and relevance vector machines for hyperspectral classification — A comparison , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[40]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[41]  Qi Zhao,et al.  Co-Tracking Using Semi-Supervised Support Vector Machines , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[42]  Bianca Zadrozny,et al.  Learning and making decisions when costs and probabilities are both unknown , 2001, KDD '01.

[43]  Jason Weston,et al.  Solving multiclass support vector machines with LaRank , 2007, ICML '07.

[44]  Pat Langley,et al.  Constraints on Tree Structure in Concept Formation , 1991, IJCAI.

[45]  Horst Bischof,et al.  Incremental LDA Learning by Combining Reconstructive and Discriminative Approaches , 2007, BMVC.

[46]  Glenn Fung,et al.  Incremental Support Vector Machine Classification , 2002, SDM.

[47]  Ji Zhu,et al.  Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.

[48]  Antoine Cornuéjols,et al.  Getting Order Independence in Incremental Learning , 1993, ECML.

[49]  Rich Caruana,et al.  Predicting good probabilities with supervised learning , 2005, ICML.

[50]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[51]  Peter Sollich,et al.  Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities , 2002, Machine Learning.

[52]  John A. Richards,et al.  Analysis of remotely sensed data: the formative decades and the future , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[53]  J. Cihlar Land cover mapping of large areas from satellites: Status and research priorities , 2000 .

[54]  Samy Bengio,et al.  A Probabilistic Interpretation of SVMs with an Application to Unbalanced Classification , 2005, NIPS.

[55]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[56]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[57]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[58]  S. Sathiya Keerthi,et al.  A Fast Dual Algorithm for Kernel Logistic Regression , 2002, 2007 International Joint Conference on Neural Networks.

[59]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[60]  Stefan Rüping,et al.  Incremental Learning with Support Vector Machines , 2001, ICDM.

[61]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[62]  Ribana Roscher,et al.  Incremental import vector machines for large area land cover classification , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[63]  D. M. Titterington,et al.  On the generative-discriminative tradeoff approach: Interpretation, asymptotic efficiency and classification performance , 2010, Comput. Stat. Data Anal..

[64]  Gavin C. Cawley,et al.  Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation , 2006, NIPS.

[65]  Bernhard Schölkopf,et al.  Support Vector Machines as Probabilistic Models , 2011, ICML.

[66]  P. Strobl,et al.  Pan-European Forest/Non-Forest Mapping with Landsat ETM+ and CORINE Land Cover 2000 Data , 2009 .

[67]  Carlo Tomasi,et al.  Efficient Visual Object Tracking with Online Nearest Neighbor Classifier , 2010, ACCV.

[68]  Georg Heigold,et al.  Latent Log-Linear Models for Handwritten Digit Classification , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[70]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Pedro M. Domingos,et al.  Tree Induction for Probability-Based Ranking , 2003, Machine Learning.

[72]  Josef Kellndorfer,et al.  Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[73]  Patrick Hostert,et al.  Land cover mapping of large areas using chain classification of neighboring Landsat satellite images , 2009 .

[74]  Ales Leonardis,et al.  Online Discriminative Kernel Density Estimation , 2010, 2010 20th International Conference on Pattern Recognition.

[75]  Zhuowen Tu,et al.  Combining Generative and Discriminative Models for Semantic Segmentation of CT Scans via Active Learning , 2011, IPMI.

[76]  Zhuowen Tu,et al.  Learning Generative Models via Discriminative Approaches , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[78]  Hans Spada,et al.  Learning in Humans and Machines , 1995 .

[79]  William J. Emery,et al.  Active Learning Methods for Remote Sensing Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.