Model for the temperature dependence of the quasiparticle interference pattern in the measured scanning tunneling spectra of underdoped cuprate superconductors

In this paper we explore the behavior of the quasi-particle interference pattern (QPI) of scanning tunneling microscopy as a function of temperature, $T$. After insuring a minimal consistency with photoemission, we find that the QPI pattern is profoundly sensitive to quasi-particle coherence and that it manifests two energy gap scales. The nearly dispersionless QPI pattern above $T_c$ is consistent with data on moderately underdoped cuprates. To illustrate the important two energy scale physics we present predictions of the QPI--inferred energy gaps as a function of $T$ for future experiments on moderately underdoped cuprates.