Barrier Function Certificates for Forward Invariance in Hybrid Inclusions

This paper proposes barrier functions for the study of forward invariance in hybrid systems modeled by hybrid inclusions. After introducing an appropriate notion of a barrier function, we propose sufficient conditions to guarantee forward invariance properties of a set for hybrid systems with nonuniqueness of solutions, solutions terminating prematurely, and Zeno solutions. Our conditions involve infinitesimal conditions on the barrier certificate and Minkowski functionals. Examples illustrate the results.

[1]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[2]  Raymond M. Redheffer,et al.  The Theorems of Bony and Brezis on Flow-Invariant Sets , 1972 .

[3]  Frank Allgöwer,et al.  CONSTRUCTIVE SAFETY USING CONTROL BARRIER FUNCTIONS , 2007 .

[4]  Ricardo G. Sanfelice,et al.  On notions and sufficient conditions for forward invariance of sets for hybrid dynamical systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[5]  Anders Rantzer,et al.  On the necessity of barrier certificates , 2005 .

[6]  J. Doyle,et al.  Optimization-based methods for nonlinear and hybrid systems verification , 2005 .

[7]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[8]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[12]  George J. Pappas,et al.  Stochastic safety verification using barrier certificates , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[14]  Adrian Wills,et al.  Barrier function based model predictive control , 2004, Autom..

[15]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[16]  Bayu Jayawardhana,et al.  Stabilization with guaranteed safety using Control Lyapunov-Barrier Function , 2016, Autom..

[17]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[18]  Rafael Wisniewski,et al.  Converse Barrier Certificate Theorems , 2016, IEEE Transactions on Automatic Control.

[19]  Ricardo G. Sanfelice,et al.  Forward Invariance of Sets for Hybrid Dynamical Systems (Part I) , 2018, IEEE Transactions on Automatic Control.

[20]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .