Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations

X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the ICM physics is understood and controlled. In this paper we present mock Chandra analyses of cosmological cluster simulations and assess X-ray measurements of galaxy cluster properties using a model and procedure essentially identical to that used in real data analysis. We show that reconstruction of three-dimensional ICM density and temperature profiles is excellent for relaxed clusters, but still reasonably accurate for unrelaxed systems. The total ICM mass is measured quite accurately (≲6%) in all clusters, while the hydrostatic estimate of the gravitationally bound mass is biased low by about 5%-20% through the virial region, primarily due to additional pressure support provided by subsonic bulk motions in the ICM, ubiquitous in our simulations even in relaxed systems. Gas fraction determinations are therefore biased high; the bias increases toward cluster outskirts and depends sensitively on its dynamical state, but we do not observe significant trends of the bias with cluster mass or redshift. We also find that different average ICM temperatures, such as the X-ray spectroscopic Tspec and gas-mass-weighted Tmg, are related to each other by a constant factor with a relatively small object-to-object scatter and no systematic trend with mass, redshift, or the dynamical state of clusters. We briefly discuss direct applications of our results for different cluster-based cosmological tests.

[1]  R. Valdarnini X-ray temperature spectroscopy of simulated cooling clusters , 2006, astro-ph/0606481.

[2]  V. Springel,et al.  Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters , 2006, astro-ph/0605301.

[3]  D. Nagai,et al.  A New Robust Low-Scatter X-Ray Mass Indicator for Clusters of Galaxies , 2006, astro-ph/0603205.

[4]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[5]  A. Vikhlinin,et al.  Chandra Sample of Galaxy Clusters at z = 0.4-0.55: Evolution in the Mass-Temperature Relation , 2005, astro-ph/0511044.

[6]  K. Dolag,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005, astro-ph/0507480.

[7]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[8]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[9]  A. Vikhlinin Predicting a Single-Temperature Fit to Multicomponent Thermal Plasma Spectra , 2005, astro-ph/0504098.

[10]  D. Nagai,et al.  Effects of Cooling and Star Formation on the Baryon Fractions in Clusters , 2005, astro-ph/0501227.

[11]  M. Markevitch,et al.  Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters , 2004, astro-ph/0412306.

[12]  L. Moscardini,et al.  Mismatch between X-Ray and Emission-weighted Temperatures in Galaxy Clusters: Cosmological Implications , 2004, astro-ph/0409650.

[13]  Potsdam,et al.  Supersonic motions of galaxies in clusters , 2004, astro-ph/0408488.

[14]  F. Pearce,et al.  Cosmological simulations of the intracluster medium , 2004, astro-ph/0407058.

[15]  A. C. Fabian,et al.  Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters , 2004 .

[16]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[17]  A. Finoguenov,et al.  Probing turbulence in the Coma galaxy cluster , 2004, astro-ph/0404132.

[18]  M. Begelman,et al.  Three-Dimensional Simulations of Viscous Dissipation in the Intracluster Medium , 2004, astro-ph/0403690.

[19]  L. Moscardini,et al.  A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.

[20]  M. Begelman,et al.  Cluster Heating by Viscous Dissipation of Sound Waves , 2003, astro-ph/0310760.

[21]  R. Sunyaev,et al.  Turbulence in clusters of galaxies and X-ray line profiles , 2003, astro-ph/0310737.

[22]  S. Ettori Are we missing baryons in galaxy clusters , 2003, astro-ph/0305296.

[23]  S. Virani,et al.  Chandra Spectra of the Soft X-Ray Diffuse Background , 2002, astro-ph/0209441.

[24]  S. Molendi,et al.  Gravitating mass profiles of nearby galaxy clusters and relations with X-ray gas temperature, luminosity and mass , 2002, astro-ph/0206120.

[25]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[26]  F. Pearce,et al.  The Effect of Radiative Cooling on Scaling Laws of X-Ray Groups and Clusters , 2001, astro-ph/0102048.

[27]  J. Bullock,et al.  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[28]  M. White,et al.  The Effect of the Cosmic Web on Cluster Weak Lensing Mass Estimates , 2000, astro-ph/0005442.

[29]  A. Evrard,et al.  Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster’s Dynamical State , 2000, astro-ph/0004309.

[30]  A. Klypin,et al.  Merging History as a Function of Halo Environment , 2000, astro-ph/0004132.

[31]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[32]  J. Mohr,et al.  The Effects of Clumping and Substructure on Intracluster Medium Mass Measurements , 1999, astro-ph/9904429.

[33]  A. Kravtsov High-resolution simulations of structure formation in the universe , 1999 .

[34]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[35]  A. Hornstrup,et al.  A Catalog of 203 Galaxy Clusters Serendipitously Detected in the ROSAT PSPC Pointed Observations , 1998, astro-ph/9803099.

[36]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[37]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[38]  A. Loeb,et al.  Do the Electrons and Ions in X-Ray Clusters Share the Same Temperature? , 1997, astro-ph/9706266.

[39]  A New Method to Estimate Cosmological Parameters Using the Baryon Fraction of Clusters of Galaxies , 1999 .

[40]  U. Pen Measuring the universal deceleration using angular diameter distances to clusters of galaxies , 1996, astro-ph/9610090.

[41]  A. Evrard,et al.  Mass estimates of X-ray clusters , 1995, astro-ph/9510058.

[42]  M. Markevitch,et al.  Abell 2163: temperature, mass, and hydrostatic equilibrium , 1996 .

[43]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[44]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[45]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[46]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .