Structure based classification of μ-CT images of human trabecular bone using local Minkowski Functionals

We analyse μ-CT tomographic images of human trabecular bone in vitro. We consider a sample consisting of 201 bone specimens harvested from six different skeletal sites within a narrow range of bone fraction values. Using the characterization of the trabecular bone network given by local Minkowski Functionals, we apply classification algorithms in order to reveal structural similarities in the sample. Clusters show some interesting specific structural features, like compact, porous, and fragmented structures. The contribution of the different skeletal sites to these clusters indicate some variability due to intrinsic structural differences of the specific skeletal site.

[1]  T. M. Link,et al.  The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo , 2006, Osteoporosis International.

[2]  Ernst J. Rummeny,et al.  Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures , 2004, SPIE Medical Imaging.

[3]  Mecke Morphological characterization of patterns in reaction-diffusion systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Krzysztof M. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1998 .

[5]  Wolfram Bunk,et al.  Characterizing synchronization in time series using information measures extracted from symbolic representations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[7]  Victor Sofonea,et al.  Morphology of spinodal decomposition , 1997 .

[8]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[9]  N. Fazzalari,et al.  Interrelationships Between Structural Parameters of Cancellous Bone Reveal Accelerated Structural Change at Low Bone Volume , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  H. K. Eriksen,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004 .

[11]  Kristel Michielsen,et al.  Integral-geometry morphological image analysis , 2001 .

[12]  Felix Eckstein,et al.  Strength through structure: visualization and local assessment of the trabecular bone structure , 2008 .

[13]  Dirk Müller,et al.  Assessment of the human trabecular bone structure using Minkowski functionals , 2009, Medical Imaging.

[14]  Roberto A. Monetti,et al.  Comparing the sensitivity of wavelets, Minkowski functionals, and scaling indices to higher order correlations in MR images of the trabecular bone using surrogates , 2009, Medical Imaging.

[15]  Ernst J. Rummeny,et al.  Comparison and combination of scaling index method and Minkowski functionals in the analysis of high resolution magnetic resonance images of the distal radius in vitro , 2008, SPIE Medical Imaging.

[16]  Martin Kerscher,et al.  Fluctuations in the IRAS 1.2 Jy catalogue , 1997, astro-ph/9704028.

[17]  M. Hahn,et al.  Heterogeneity of the skeleton: Comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  Roberto A. Monetti,et al.  Assessing texture measures with respect to their sensitivity to scale-dependent higher order correlations in medical images using surrogates , 2010, Medical Imaging.