A Morse-Sard theorem for the distance function on Riemannian manifolds
暂无分享,去创建一个
[1] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[2] H. Whitney. A Function Not Constant on a Connected Set of Critical Points , 1935 .
[3] Steve Ferry. When ε-boundaries are manifolds , 1976 .
[4] Jin-ichi Itoh,et al. The Lipschitz continuity of the distance function to the cut locus , 2000 .
[5] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[6] F. Clarke. Generalized gradients and applications , 1975 .
[7] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[8] H. Rademacher. Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .
[9] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[10] Yosef Yomdin,et al. The geometry of critical and near-critical values of differentiable mappings , 1983 .
[11] M. Coste. Ensembles semi-algebriques , 1982 .
[12] A. Morse,et al. The Behavior of a Function on Its Critical Set , 1939 .
[13] A. Mondino. ON RIEMANNIAN MANIFOLDS , 1999 .
[14] S. Łojasiewicz. Ensembles semi-analytiques , 1965 .
[15] A. Sard,et al. The measure of the critical values of differentiable maps , 1942 .
[16] J. Fu,et al. Tubular neighborhoods in Euclidean spaces , 1985 .
[17] Jin-ichi Itoh,et al. A Sard theorem for the distance function , 2001 .