Galileo Probe Doppler residuals as the wave‐dynamical signature of weakly stable, downward‐increasing stratification in Jupiter's deep wind layer

Doppler radio tracking of the Galileo probe-to- orbiter relay, previously analyzed for its in situ measure of Jupiter's zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 - 20 bar region of Jupiter's atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 - 4 bars is roughly consistent with a static stability of ~ 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.

[1]  P. Gierasch,et al.  Dynamics of the atmospheres of the outer planets , 1992 .

[2]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[3]  David H. Atkinson,et al.  The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter , 1998 .

[4]  T. Dowling,et al.  Nonlinear simulations of Jupiter's 5-micron hot spots. , 2000, Science.

[5]  Peter L. Read,et al.  A mechanistic model of the quasi-quadrennial oscillation in Jupiter’s stratosphere , 2000 .

[6]  K. McGrattan,et al.  Moist convection and the vertical structure and water abundance of Jupiter's atmosphere , 1990 .

[7]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[8]  R. Lindzen Dynamics in Atmospheric Physics: Instability 2: Energetics and climate implications , 1990 .

[9]  A. Ingersoll,et al.  A Normal-Mode Approach to Jovian Atmospheric Dynamics , 1989 .

[10]  G. Orton,et al.  Evolution and persistence of 5‐μm hot spots at the Galileo probe entry latitude , 1998 .

[11]  R. Walterscheid Wave Disturbances from the Comet SL-9 Impacts into Jupiter's Atmosphere , 2000 .

[12]  M. Allison A similarity model for the windy jovian thermocline , 2000 .

[13]  A. Genio,et al.  Richardson number constraints for the Jupiter and outer planet wind regime , 1995 .

[14]  P. Gierasch,et al.  Energy conversion processes in the outer planets. , 1985 .

[15]  Masaki Ishiwatari,et al.  Numerical modeling of Jupiter's moist convection layer , 2000 .

[16]  F. M. Flasar,et al.  Mesoscale waves as a probe of Jupiter's deep atmosphere. , 1984 .

[17]  H. Kanamori,et al.  Waves from the collisions of comet Shoemaker–Levy 9 with Jupiter , 1995, Nature.

[18]  G. Orton,et al.  A Dynamical Model of Jupiter's 5-Micron Hot Spots , 1999 .

[19]  J. A. Magalhāes,et al.  The Stratification of Jupiter's Troposphere at the Galileo Probe Entry Site , 2000 .

[20]  H. Kanamori,et al.  Atmospheric gravity waves from the impact of comet Shoemaker‐Levy 9 with Jupiter , 1994 .

[21]  A. Ingersoll,et al.  Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion , 1982 .

[22]  D. Hunten,et al.  The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. , 1998, Journal of geophysical research.

[23]  M. Oestreich,et al.  Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation , 1997, Science.

[24]  G. P. Williams Planetary vortices and Jupiter's vertical structure , 1997 .