Analysis of slow transitions between nonequilibrium steady states

Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green-Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, $\Delta s_{\rm na}$. Furthermore, our results extend -- to nonequilibrium steady states -- the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

[1]  Patrick L. Odell,et al.  Generalized Inverse Matrices , 1971 .

[2]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs–Duhem relations , 1975 .

[3]  Jordan Michael Abel Horowitz,et al.  Controlling molecular-scale motion: Exact predictions for driven stochastic systems , 2010 .

[4]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[5]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .

[6]  S. Sasa Collective dynamics from stochastic thermodynamics , 2014, 1501.00055.

[7]  Jan Hermans,et al.  Simple analysis of noise and hysteresis in (slow-growth) free energy simulations , 1991 .

[8]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[9]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[10]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[11]  Bjarne Andresen,et al.  The significance of Weinhold’s length , 1980 .

[12]  Thomas Speck,et al.  Distribution of work in isothermal nonequilibrium processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David A. Sivak,et al.  Geometry of thermodynamic control. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[15]  Robert H. Wood,et al.  Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: sample-size hysteresis , 1991 .

[16]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[17]  Massimiliano Esposito,et al.  Three detailed fluctuation theorems. , 2009, Physical review letters.

[18]  M. Esposito,et al.  Entropy fluctuation theorems in driven open systems: application to electron counting statistics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Hong Qian,et al.  Physical origins of entropy production, free energy dissipation, and their mathematical representations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[21]  C. Maes,et al.  Computation of Current Cumulants for Small Nonequilibrium Systems , 2008, 0807.0145.

[22]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[23]  Luca Peliti Statistical Mechanics in a Nutshell , 2011 .

[24]  Erratum: The significance of Weinhold’s length [J. Chem. Phys. 73, 1001 (1980)] , 1980 .

[25]  Hao Ge Extended forms of the second law for general time-dependent stochastic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[27]  Steady State Thermodynamics , 2004, cond-mat/0411052.

[28]  Integral fluctuation theorem for the housekeeping heat , 2005, cond-mat/0507420.

[29]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[30]  David A. Sivak,et al.  Optimal Control of Transitions between Nonequilibrium Steady States , 2013, PloS one.

[31]  C. Maes,et al.  Revisiting the Glansdorff–Prigogine Criterion for Stability Within Irreversible Thermodynamics , 2014, 1410.2183.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  T. Sagawa,et al.  Geometrical expression of excess entropy production. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  A. Engel,et al.  On the work distribution in quasi-static processes , 2013, 1303.7069.

[35]  Berry,et al.  Thermodynamic geometry and the metrics of Weinhold and Gilmore. , 1988, Physical review. A, General physics.

[36]  S. Sasa,et al.  Steady-state thermodynamics for heat conduction: microscopic derivation. , 2007, Physical review letters.

[37]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[38]  Ruppeiner Comment on "Length and curvature in the geometry of thermodynamics" , 1985, Physical review. A, General physics.

[39]  S. Sasa,et al.  Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States , 2010, 1009.0970.

[40]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[41]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[42]  C. Maes,et al.  A Nonequilibrium Extension of the Clausius Heat Theorem , 2012, 1206.3423.

[43]  Thermodynamic Transformations of Nonequilibrium States , 2012, 1206.2412.

[44]  J. Parrondo,et al.  Generalized fluctuation-dissipation theorem for steady-state systems. , 2009, Physical review letters.

[45]  G. Ruppeiner,et al.  Thermodynamics: A Riemannian geometric model , 1979 .

[46]  L. Bertini,et al.  Quantitative analysis of the Clausius inequality , 2015 .

[47]  Ken Sekimoto,et al.  Complementarity Relation for Irreversible Process Derived from Stochastic Energetics , 1997 .

[48]  J. Schnakenberg Network theory of microscopic and macroscopic behavior of master equation systems , 1976 .

[49]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[50]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[51]  Clausius inequality and optimality of quasistatic transformations for nonequilibrium stationary states. , 2012, Physical review letters.

[52]  D. Mandal Nonequilibrium heat capacity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  J. Pešek,et al.  Heat capacity in nonequilibrium steady states , 2011, 1109.3054.

[54]  G. Crooks,et al.  Length of time's arrow. , 2008, Physical review letters.

[55]  T. Hatano,et al.  Steady-state thermodynamics of Langevin systems. , 2000, Physical review letters.

[56]  H. Risken Fokker-Planck Equation , 1984 .

[57]  Pauline Coolen-Schrijner,et al.  THE DEVIATION MATRIX OF A CONTINUOUS-TIME MARKOV CHAIN , 2002, Probability in the Engineering and Informational Sciences.