Extraction of the frequency moments of spectral densities from imaginary-time correlation function data

We introduce an exact framework to compute the positive frequency moments M ( α ) ( q ) = (cid:104) ω α (cid:105) of different dynamic properties from imaginary-time quantum Monte Carlo data. As a practical example, we obtain the first five moments of the dynamic structure factor S ( q , ω ) of the uniform electron gas at the electronic Fermi temperature based on ab initio path integral Monte Carlo simulations. We find excellent agreement with known sum rules for α = 1 , 3, and, to our knowledge, present the first results for α = 2 , 4 , 5. Our idea can be straightforwardly generalized to other dynamic properties such as the single-particle spectral function A ( q , ω ), and will be useful for a number of applications, including the study of ultracold atoms, exotic warm dense matter, and condensed matter systems.

[1]  T. Preston,et al.  Electronic density response of warm dense matter , 2022, Physics of Plasmas.

[2]  M. Hecht,et al.  Multivariate Polynomial Regression of Euclidean Degree Extends the Stability for Fast Approximations of Trefethen Functions , 2022, ArXiv.

[3]  T. Preston,et al.  Temperature analysis of X-ray Thomson scattering data , 2022, 2212.10510.

[4]  J. Vorberger,et al.  Analyzing X-ray Thomson scattering experiments of warm dense matter in the imaginary-time domain: theoretical models and simulations , 2022, 2211.00579.

[5]  J. Vorberger,et al.  Physical insights from imaginary-time density–density correlation functions , 2022, Matter and Radiation at Extremes.

[6]  T. Preston,et al.  Accurate temperature diagnostics for matter under extreme conditions , 2022, Nature communications.

[7]  J. Vorberger,et al.  Spin-resolved density response of the warm dense electron gas , 2022, Physical Review Research.

[8]  I. M. Tkachenko,et al.  Classical and quantum warm dense electron gas dynamic characteristics: analytic predictions , 2022, Journal of Physics: Conference Series.

[9]  M. Bonitz,et al.  Electronic pair alignment and roton feature in the warm dense electron gas , 2022, Communications Physics.

[10]  R. Qin,et al.  Energy Relaxation and Electron–Phonon Coupling in Laser-Excited Metals , 2022, Materials.

[11]  W. Kraeft,et al.  The Uniform Electron Gas at High Temperatures: Ab Initio Path Integral Monte Carlo Simulations and Analytical Theory , 2022, SSRN Electronic Journal.

[12]  Yuichi Motoyama,et al.  Robust analytic continuation combining the advantages of the sparse modeling approach and the Padé approximation , 2021, Physical Review B.

[13]  P. Tolias,et al.  Bridge functions of classical one-component plasmas. , 2021, Physical review. E.

[14]  T. Dornheim,et al.  Classical bridge functions in classical and quantum plasma liquids , 2021, 2107.03537.

[15]  B. Militzer,et al.  Path integral Monte Carlo approach to the structural properties and collective excitations of liquid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidema , 2022, Scientific Reports.

[16]  T. Dornheim,et al.  Integral equation theory based dielectric scheme for strongly coupled electron liquids. , 2021, The Journal of chemical physics.

[17]  J. Vorberger,et al.  Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas. , 2021, The Journal of chemical physics.

[18]  T. Dornheim Fermion sign problem in path integral Monte Carlo simulations: grand-canonical ensemble , 2021, 2104.10032.

[19]  B. Militzer,et al.  Ab initio path integral Monte Carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes , 2021, Physical Review B.

[20]  J. Vorberger,et al.  Overcoming finite-size effects in electronic structure simulations at extreme conditions. , 2021, The Journal of chemical physics.

[21]  Z. Moldabekov,et al.  Analytical representation of the local field correction of the uniform electron gas within the effective static approximation , 2021, Physical Review B.

[22]  Joonho Lee,et al.  A phaseless auxiliary-field quantum Monte Carlo perspective on the uniform electron gas at finite temperatures: Issues, observations, and benchmark study. , 2020, The Journal of chemical physics.

[23]  E. Gull,et al.  Nevanlinna Analytical Continuation. , 2020, Physical review letters.

[24]  I. Sbalzarini,et al.  Multivariate Interpolation on Unisolvent Nodes - Lifting the Curse of Dimensionality , 2020, ArXiv.

[25]  M. Bonitz,et al.  Dynamic properties of the warm dense electron gas: an ab initio path integral Monte Carlo approach , 2020, 2007.15471.

[26]  M. Bonitz,et al.  Restricted configuration path integral Monte Carlo. , 2020, The Journal of chemical physics.

[27]  J. Vorberger,et al.  Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. , 2020, Physical review. E.

[28]  M. Bonitz,et al.  Nonlinear Electronic Density Response in Warm Dense Matter. , 2020, Physical review letters.

[29]  J. Vorberger,et al.  Ab initio path integral monte carlo simulation of the uniform electron gas in the high energy density regime , 2020, Plasma Physics and Controlled Fusion.

[30]  J. Vorberger,et al.  Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories , 2019, Physical Review B.

[31]  Hiroshi Shinaoka,et al.  Sparse Modeling in Quantum Many-Body Problems , 2019, Journal of the Physical Society of Japan.

[32]  M. Bonitz,et al.  Ab initio simulation of warm dense matter , 2019, Physics of Plasmas.

[33]  M. Bonitz,et al.  The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. , 2019, The Journal of chemical physics.

[34]  T. Dornheim Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter. , 2019, Physical review. E.

[35]  J. Dufty,et al.  Status of free-energy representations for the homogeneous electron gas , 2019, Physical Review B.

[36]  J. Vorberger,et al.  Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas , 2019, Physical Review B.

[37]  M. Bonitz,et al.  Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties. , 2019, The Journal of chemical physics.

[38]  Igor Krivenko,et al.  TRIQS/SOM: Implementation of the stochastic optimization method for analytic continuation , 2018, Comput. Phys. Commun..

[39]  Bevan L. Cheeseman,et al.  Multivariate Newton Interpolation , 2018, 1812.04256.

[40]  M. Bonitz,et al.  Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. , 2018, Physical review letters.

[41]  M. Boninsegni,et al.  Dynamic structure factor of superfluid He4 from quantum Monte Carlo: Maximum entropy revisited , 2018, Physical Review B.

[42]  Ivo F. Sbalzarini,et al.  Fast Interpolation and Fourier Transform in High-Dimensional Spaces , 2018, Advances in Intelligent Systems and Computing.

[43]  B. Ishak High-energy-density physics: foundation of inertial fusion and experimental astrophysics , 2018, Contemporary Physics.

[44]  M. Bonitz,et al.  Sum rules and exact inequalities for strongly coupled one‐component plasmas , 2018, Contributions to Plasma Physics.

[45]  M. Bonitz,et al.  Recent progress in the theory and simulation of strongly correlated plasmas: phase transitions, transport, quantum, and magnetic field effects , 2018 .

[46]  R. P. Drake High-energy-density physics: foundation of inertial fusion and experimental astrophysics (graduate texts in physics) , 2018 .

[47]  M. Schuler,et al.  Spectral properties from Matsubara Green's function approach: Application to molecules , 2017, 1710.08660.

[48]  I. Sbalzarini,et al.  A Quadratic-Time Algorithm for General Multivariate Polynomial Interpolation , 2017, 1710.10846.

[49]  Harald Sinn,et al.  Photon Beam Transport and Scientific Instruments at the European XFEL , 2017 .

[50]  Krishan Kumar,et al.  Spin-resolved correlations in the warm-dense homogeneous electron gas , 2017 .

[51]  F. Malone,et al.  Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions. , 2017, Physical review letters.

[52]  M. Ohzeki,et al.  Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data. , 2017, Physical review. E.

[53]  S. Tanaka Improved equation of state for finite‐temperature spin‐polarized electron liquids on the basis of Singwi–Tosi–Land–Sjölander approximation , 2016, 1612.09037.

[54]  L. Pollet,et al.  Numerical analytic continuation: Answers to well-posed questions , 2016, 1609.01260.

[55]  G. Bertaina,et al.  Statistical and computational intelligence approach to analytic continuation in Quantum Monte Carlo , 2016, 1611.08502.

[56]  Y. Takada Emergence of an excitonic collective mode in the dilute electron gas , 2016, 1611.06479.

[57]  Travis Sjostrom,et al.  Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit. , 2016, Physical review letters.

[58]  R. Betti,et al.  Inertial-confinement fusion with lasers , 2016, Nature Physics.

[59]  A. Filinov Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition , 2016, 1604.08110.

[60]  J. Boronat,et al.  Dynamic structure factor of liquid 4 He across the normal-superfluid transition , 2016, 1603.02811.

[61]  M. Bonitz,et al.  Stopping dynamics of ions passing through correlated honeycomb clusters , 2016, 1602.06928.

[62]  N. S. Blunt,et al.  Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas. , 2016, Physical review letters.

[63]  Pierre-François Loos,et al.  The uniform electron gas , 2016, 1601.03544.

[64]  A. Sandvik Constrained sampling method for analytic continuation. , 2015, Physical review. E.

[65]  Yvonne Koch,et al.  A Primer In Density Functional Theory , 2016 .

[66]  M. Motta,et al.  Imaginary time density-density correlations for two-dimensional electron gases at high density. , 2015, The Journal of chemical physics.

[67]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[68]  M. Bonitz,et al.  Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature. , 2015, The Journal of chemical physics.

[69]  N. Blunt,et al.  Interaction picture density matrix quantum Monte Carlo. , 2015, The Journal of chemical physics.

[70]  M. Bonitz,et al.  Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions , 2015, 1504.03859.

[71]  M. Bonitz,et al.  Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature. , 2015, Physical review letters.

[72]  Erik Brambrink,et al.  Progress in warm dense matter study with applications to planetology , 2014 .

[73]  D Hochhaus,et al.  Resolving ultrafast heating of dense cryogenic hydrogen. , 2014, Physical review letters.

[74]  Travis Sjostrom,et al.  Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. , 2014, Physical review letters.

[75]  Jean-Pierre Hansen,et al.  Theory of Simple Liquids: with Applications to Soft Matter , 2013 .

[76]  Travis Sjostrom,et al.  Uniform electron gas at finite temperatures , 2013, 1308.2021.

[77]  R. Needs,et al.  Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas , 2013, 1307.5794.

[78]  D. Ceperley,et al.  Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature , 2013, 1306.1863.

[79]  S. Dutta,et al.  Uniform electron gas at warm, dense matter conditions , 2013 .

[80]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[81]  D. Ceperley,et al.  Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. , 2012, Physical review letters.

[82]  Z. Donkó,et al.  Dynamic ion structure factor of warm dense matter. , 2012, Physical review letters.

[83]  M. Bonitz,et al.  Collective and single-particle excitations in two-dimensional dipolar Bose gases , 2012, 1205.5191.

[84]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[85]  S. Skupsky,et al.  First-principles equation-of-state table of deuterium for inertial confinement fusion applications , 2011, 1110.0001.

[86]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[87]  D. Ceperley,et al.  Momentum distribution and renormalization factor in sodium and the electron gas. , 2010, Physical review letters.

[88]  T. Bornath,et al.  Energy relaxation in dense, strongly coupled two-temperature plasmas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Mark Jarrell,et al.  Analytic continuation of quantum Monte Carlo data by stochastic analytical inference. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  D. E. Galli,et al.  Ab initio low-energy dynamics of superfluid and solid 4He , 2009, 0905.4406.

[91]  D. Hochstuhl,et al.  Nonequilibrium Green function approach to photoionization processes in atoms , 2009, 0902.0768.

[92]  S. Glenzer,et al.  X-ray Thomson scattering in high energy density plasmas , 2009 .

[93]  V. Fortov Extreme states of matter on Earth and in space , 2009 .

[94]  P. Colosimo,et al.  Strong-field photoionization revisited , 2009 .

[95]  B. Militzer,et al.  A Massive Core in Jupiter Predicted from First-Principles Simulations , 2008, 0807.4264.

[96]  B. Svistunov,et al.  Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[98]  B. Svistunov,et al.  Worm algorithm for continuous-space path integral monte carlo simulations. , 2005, Physical review letters.

[99]  E. Meijering A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[100]  Akihiko Sakamoto,et al.  Diagrammatic quantum Monte Carlo study of the Fröhlich polaron , 2000 .

[101]  P. Gori-Giorgi,et al.  Analytic static structure factors and pair-correlation functions for the unpolarized homogeneous electron gas , 1999, cond-mat/9909448.

[102]  Los Alamos National Laboratory,et al.  Zero Temperature Phases of the Electron Gas , 1998, cond-mat/9810126.

[103]  G. Onida,et al.  Analytical expressions for the local-field factor G(q) and the exchange-correlation kernel K_{xc}(r) of the homogeneous electron gas , 1998, cond-mat/9803227.

[104]  D. Ceperley,et al.  Density fluctuations in liquid4He. Path integrals and maximum entropy , 1996 .

[105]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[106]  Mark Jarrell,et al.  Bayesian Inference and the Analytic Continuation of Imaginary-Time Quantum Monte Carlo Data , 1995 .

[107]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[108]  V. Shaginyan,et al.  New approach in the microscopic Fermi systems theory , 1994 .

[109]  Alder,et al.  Static dielectric response of the electron gas. , 1994, Physical review. B, Condensed matter.

[110]  Ortiz,et al.  Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas. , 1994, Physical review. B, Condensed matter.

[111]  Silver,et al.  Maximum-entropy method for analytic continuation of quantum Monte Carlo data. , 1990, Physical review. B, Condensed matter.

[112]  Nagy,et al.  Nonlinear stopping power and energy-loss straggling of an interacting electron gas for slow ions. , 1989, Physical review. A, General physics.

[113]  一丸 節夫,et al.  Statistical physics of dense plasmas : thermodynamics, transport coefficients and dynamic correlations , 1986 .

[114]  D. Pines,et al.  Theory of electron liquids. II. Static and dynamic form factors, correlation energy, and plasmon dispersion , 1984 .

[115]  Takahashi Minoru,et al.  Monte Carlo Calculation of Quantum Systems , 1984 .

[116]  B. Berne,et al.  On the calculation of time correlation functions in quantum systems: Path integral techniquesa) , 1983 .

[117]  S. Ichimaru Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids , 1982 .

[118]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[119]  M. P. Tosi,et al.  Correlations in Electron Liquids , 1982 .

[120]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[121]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[122]  K. Utsumi,et al.  Dielectric formulation of strongly coupled electron liquid at metallic densities: Longitudinal response , 1980 .

[123]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[124]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[125]  J. Hansen,et al.  Statistical mechanics of simple coulomb systems , 1980 .

[126]  N. Ailawadi Equilibrium theories of simple liquids , 1980 .

[127]  E. Hewitt,et al.  The Gibbs-Wilbraham phenomenon: An episode in fourier analysis , 1979 .

[128]  D. Pines,et al.  Sum-Rule Analysis of Long-Wavelength Excitations in Electron Liquids , 1975 .

[129]  Harbhajan Singh Electron correlations at metallic densities , 1975 .

[130]  A. A. Kugler,et al.  Theory of the local field correction in an electron gas , 1975 .

[131]  S. Stigler Gergonne's 1815 paper on the design and analysis of polynomial regression experiments , 1974 .

[132]  J. D Gergonne,et al.  The application of the method of least squares to the interpolation of sequences , 1974 .

[133]  G. Niklasson Dielectric function of the uniform electron gas for large frequencies or wave vectors , 1974 .

[134]  K. N. Pathak,et al.  Sum rules and atomic correlations in classical liquids , 1974 .

[135]  A. A. Kugler,et al.  Collective modes, damping, and the scattering function in classical liquids , 1973 .

[136]  P. Vashishta,et al.  Electron correlations and moment sum rules , 1973 .

[137]  A. A. Kugler,et al.  BOUNDS FOR SOME EQUILIBRIUM PROPERTIES OF AN ELECTRON GAS. , 1970 .

[138]  Paul C. Martin,et al.  Moments of the Momentum Density Correlation Functions in Simple Liquids , 1968 .

[139]  R. Puff Application of Sum Rules to the Low-Temperature Interacting Boson System , 1965 .

[140]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[141]  G. Placzek The Scattering of Neutrons by Systems of Heavy Nuclei , 1952 .