Stirling operators in spatial combinatorics

We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from a natural number $m\in\mathbb N$ to the falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ of an argument $z$ from $\mathbb F=\mathbb R\text{ or }\mathbb C$, and Stirling numbers of the first and second kinds are the coefficients of the expansions of $(z)_n$ through $z^k$, $k\leq n$ and vice versa. When taking into account spatial positions of elements in a locally compact Polish space $X$, we replace $\mathbb N$ by the space of configurations---discrete Radon measures $\gamma=\sum_i\delta_{x_i}$ on $X$, where $\delta_{x_i}$ is the Dirac measure with mass at $x_i$.The spatial falling factorials $(\gamma)_n:=\sum_{i_1}\sum_{i_2\ne i_1}\dotsm\sum_{i_n\ne i_1,\dots, i_n\ne i_{n-1}}\delta_{(x_{i_1},x_{i_2},\dots,x_{i_n})}$ can be naturally extended to mappings $M^{(1)}(X)\ni\omega\mapsto (\omega)_n\in M^{(n)}(X)$, where $M^{(n)}(X)$ denotes the space of $\mathbb F$-valued, symmetric (for $n\ge2$) Radon measures on $X^n$. There is a natural duality between $M^{(n)}(X)$ and the space $\mathcal {CF}^{(n)}(X)$ of $\mathbb F$-valued, symmetric continuous functions on $X^n$ with compact support. The Stirling operators of the first and second kind, $\mathbf{s}(n,k)$ and $\mathbf{S}(n,k)$, are linear operators, acting between spaces $\mathcal {CF}^{(n)}(X)$ and $\mathcal {CF}^{(k)}(X)$ such that their dual operators, acting from $M^{(k)}(X)$ into $M^{(n)}(X)$, satisfy $(\omega)_n=\sum_{k=1}^n\mathbf{s}(n,k)^*\omega^{\otimes k}$ and $\omega^{\otimes n}=\sum_{k=1}^n\mathbf{S}(n,k)^*(\omega)_k$, respectively. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations.

[1]  E. Lytvynov,et al.  Noncommutative Lévy Processes for Generalized (Particularly Anyon) Statistics , 2011, 1106.2933.

[3]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[4]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[5]  Steven Roman The Umbral Calculus , 1984 .

[6]  Dennis D. Baldocchi,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2001 .

[7]  H. W. Gould,et al.  Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H W Gould , 2015 .

[8]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[9]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[10]  G. Rota,et al.  STOCHASTIC INTEGRALS: A COMBINATORIAL APPROACH , 1997 .

[11]  E. Lytvynov,et al.  On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.

[12]  D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .

[13]  R. Menikoff,et al.  Representations of a local current algebra: Their dynamical determination , 1975 .

[14]  M. Simonnet Measures and Probabilities , 1996 .

[15]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[16]  T. Mansour,et al.  Commutation Relations, Normal Ordering, and Stirling Numbers , 2015 .

[17]  D. Finkelshtein,et al.  An infinite dimensional umbral calculus , 2017, Journal of Functional Analysis.

[18]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[19]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[20]  Jacob Katriel,et al.  Combinatorial aspects of boson algebra , 1974 .

[21]  S. Semmes Topological Vector Spaces , 2003 .

[22]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[23]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[24]  Gerald A. Goldin,et al.  Nonrelativistic current algebra in the N / V limit , 1974 .

[25]  Jacob Katriel,et al.  Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers , 1992 .

[26]  A. Cohen On random fields , 1967 .

[27]  H. Bauer Measure and integration theory , 2001 .

[28]  E. Fadell,et al.  Geometry and Topology of Configuration Spaces , 2000 .

[29]  Alfred Schreiber Multivariate Stirling polynomials of the first and second kind , 2015, Discret. Math..

[30]  E. Lytvynov,et al.  Fock representations of Q-deformed commutation relations , 2016, 1603.03075.

[31]  Takahiro Hasebe,et al.  Fock space associated to Coxeter groups of type B , 2014, 1411.7997.

[32]  Roland Speicher,et al.  An example of a generalized Brownian motion , 1991 .