Stochastic stability of the continuous-time extended Kalman filter

The error behaviour of the extended Kalman filter is analysed. It is proved that the estimation error remains bounded if the system satisfies a detectability condition and both the initial estimation error and the disturbing noise terms are small enough. Moreover, some selected cases with both bounded and unbounded estimation error are demonstrated by numerical simulations.

[1]  Moshe Zakai,et al.  On the Ultimate Boundedness of Moments Associated with Solutions of Stochastic Differential Equations , 1967 .

[2]  R. Mortensen Maximum-likelihood recursive nonlinear filtering , 1968 .

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  Yoshio Miyahara,et al.  Ultimate Boundedness of the Systems Governed by Stochastic Differential Equations , 1972, Nagoya Mathematical Journal.

[5]  T. Morozan Boundedness properties for stochastic systems , 1972 .

[6]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[7]  T. Tarn,et al.  Observers for nonlinear stochastic systems , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[8]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[9]  B. Ursin Asymptotic convergence properties of the extended Kalman filter using filtered state estimates , 1980 .

[10]  W. Rüemelin Numerical Treatment of Stochastic Differential Equations , 1982 .

[11]  P. Krishnaprasad,et al.  Dynamic observers as asymptotic limits of recursive filters , 1982, 1982 21st IEEE Conference on Decision and Control.

[12]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  S. Zacks,et al.  Introduction to stochastic differential equations , 1988 .

[14]  Harro Heuser,et al.  Lehrbuch der Analysis Teil 1 , 1990 .

[15]  Lei Guo Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence , 1990 .

[16]  H. Heuser Lehrbuch der Analysis , 2022 .

[17]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[18]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[19]  E. Yaz,et al.  Observer design for discrete and continuous non-linear stochastic systems , 1993 .

[20]  D. Wiberg,et al.  A convergent approximation of the continuous-time optimal parameter estimator , 1993, IEEE Trans. Autom. Control..

[21]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[22]  Konrad Reif,et al.  An EKF-Based Nonlinear Observer with a Prescribed Degree of Stability , 1998, Autom..

[23]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[24]  Konrad Reif,et al.  Nonlinear state observation using H∞-filtering Riccati design , 1999, IEEE Trans. Autom. Control..