Superconducting gap in iron pnictides studied by optical spectroscopy

[1]  Y. Tomioka,et al.  Evolution of the optical spectrum with doping in Ba(Fe 1-x Co x ) 2 As 2 , 2010, 1003.5038.

[2]  A. Faridian,et al.  Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides , 2010 .

[3]  M. Dressel,et al.  Direct observation of a nodeless superconducting energy gap in the optical conductivity of iron-pnictides , 2009, 0912.1256.

[4]  T. Wolf,et al.  Evidence for multiple superconducting gaps in optimally doped BaFe(1.87)Co(0.13)As(2) from infrared spectroscopy , 2009, 0912.0140.

[5]  P. Canfield,et al.  Muon spin rotation measurement of the magnetic field penetration depth in Ba(Fe 0.926 Co 0.074 ) 2 As 2 : Evidence for multiple superconducting gaps , 2009, 0905.3215.

[6]  P. Canfield,et al.  Point contact Andreev reflection spectroscopy of superconducting energy gaps in 122-type family of iron pnictides , 2009, 0902.2667.

[7]  Zhu-An Xu,et al.  Fermi surface nesting induced strong pairing in iron-based superconductors , 2008, Proceedings of the National Academy of Sciences.

[8]  R. Prozorov,et al.  Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors. , 2008, Physical review letters.

[9]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[10]  G. Li,et al.  Probing the superconducting energy gap from infrared spectroscopy on a Ba0.6K0.4Fe2As2 single crystal with Tc=37 K. , 2008, Physical review letters.

[11]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.