Automatic Discovery of Optimisation Search Heuristics for Two Dimensional Strip Packing Using Genetic Programming

This paper presents a genetic programming based hyper-heuristic (GPHH) for automatic discovery of optimisation heuristics for the two dimensional strip packing problem (2D-SPP). The novelty of this method is to integrate both the construction and improvement procedure into a heuristic which can be evolved by genetic programming (GP). The experimental results show that the evolved heuristics are very competitive and sometimes better than the popular state-of-the-art optimisation search heuristics for 2D-SPP. Moreover, the evolved heuristics can search for good packing solutions in a much more efficient way compared to the other search methods.

[1]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[2]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[3]  A. Ramesh Babu,et al.  Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms , 1999 .

[4]  Daniele Vigo,et al.  Recent advances on two-dimensional bin packing problems , 2002, Discret. Appl. Math..

[5]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..

[6]  Mats Carlsson,et al.  Integrating Rule-Based Modelling and Constraint Programming for Solving Industrial Packing Problems , 2010, ERCIM News.

[7]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[8]  Bernard Chazelle,et al.  The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation , 1983, IEEE Transactions on Computers.

[9]  Graham Kendall,et al.  A squeaky wheel optimisation methodology for two-dimensional strip packing , 2011, Comput. Oper. Res..

[10]  Gleb Belov,et al.  One-dimensional heuristics adapted for two-dimensional rectangular strip packing , 2008, J. Oper. Res. Soc..

[11]  Ramón Alvarez-Valdés,et al.  Reactive GRASP for the strip-packing problem , 2008, Comput. Oper. Res..

[12]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[13]  E. Hopper,et al.  An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem , 2001, Eur. J. Oper. Res..

[14]  Pearl Y. Wang,et al.  Heuristics for Large Strip Packing Problems with Guillotine Patterns: an Empirical Study , 2001 .

[15]  Graham Kendall,et al.  A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem , 2009, INFORMS J. Comput..

[16]  Graham Kendall,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics , 2010, IEEE Transactions on Evolutionary Computation.

[17]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[18]  Graham Kendall,et al.  A New Placement Heuristic for the Orthogonal Stock-Cutting Problem , 2004, Oper. Res..

[19]  Daniele Vigo,et al.  Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems , 1999, INFORMS J. Comput..

[20]  S. Jakobs,et al.  European Journal Ofoperational Research on Genetic Algorithms for the Packing of Polygons , 2022 .

[21]  M. Hifi,et al.  A recursive exact algorithm for weighted two-dimensional cutting , 1996 .

[22]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.