A Network Intelligence Architecture for Efficient VNF Lifecycle Management

[1]  A Machine Learning based Anomaly Detection Method for NFV Management , 2008 .

[2]  Rolf Stadler,et al.  Performance Prediction in Dynamic Clouds using Transfer Learning , 2019, 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).

[3]  Jose Ordonez-Lucena,et al.  Automated Network Service Scaling in NFV: Concepts, Mechanisms and Scaling Workflow , 2018, IEEE Communications Magazine.

[4]  Filip De Turck,et al.  Design and evaluation of learning algorithms for dynamic resource management in virtual networks , 2014, 2014 IEEE Network Operations and Management Symposium (NOMS).

[5]  Peilin Hong,et al.  Virtual Network Function Selection and Chaining Based on Deep Learning in SDN and NFV-Enabled Networks , 2018, 2018 IEEE International Conference on Communications Workshops (ICC Workshops).

[6]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[7]  Yoichi Sato,et al.  Environment-Adaptive Sizing and Placement of NFV Service Chains with Accelerated Reinforcement Learning , 2019, 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).

[8]  S. Muthukrishnan,et al.  Heavy-Hitter Detection Entirely in the Data Plane , 2016, SOSR.

[9]  Hee-Gon Kim,et al.  Predicting VNF Deployment Decisions under Dynamically Changing Network Conditions , 2019, 2019 15th International Conference on Network and Service Management (CNSM).

[10]  Wolfgang Kellerer,et al.  o'zapft is: Tap Your Network Algorithm's Big Data! , 2017, Big-DAMA@SIGCOMM.

[11]  Djamal Zeghlache,et al.  An efficient algorithm for virtual network function placement and chaining , 2017, 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC).

[12]  Adlen Ksentini,et al.  Improving Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach , 2018, IEEE Network.

[13]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[14]  Xin Wang,et al.  Machine Learning for Networking: Workflow, Advances and Opportunities , 2017, IEEE Network.

[15]  Wolfgang Kellerer,et al.  Interfaces, attributes, and use cases: A compass for SDN , 2014, IEEE Communications Magazine.

[16]  Stanislav Lange,et al.  A Multi-objective Heuristic for the Optimization of Virtual Network Function Chain Placement , 2017, 2017 29th International Teletraffic Congress (ITC 29).

[17]  Ryousei Takano,et al.  DEMU: A DPDK-based network latency emulator , 2017, 2017 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN).

[18]  Mohamed Ibn Khedher,et al.  Estimating VNF Resource Requirements Using Machine Learning Techniques , 2017, ICONIP.

[19]  Djamal Zeghlache,et al.  NFV Orchestration Framework Addressing SFC Challenges , 2017, IEEE Communications Magazine.

[20]  Wolfgang Kellerer,et al.  Boost online virtual network embedding: Using neural networks for admission control , 2016, 2016 12th International Conference on Network and Service Management (CNSM).

[21]  Tarik Taleb,et al.  On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration , 2017, IEEE Communications Surveys & Tutorials.

[22]  Christian Esteve Rothenberg,et al.  Network Service Orchestration: A Survey , 2018, Comput. Commun..

[23]  Daniel Raumer,et al.  MoonGen: A Scriptable High-Speed Packet Generator , 2014, Internet Measurement Conference.

[24]  Bo Yi,et al.  A comprehensive survey of Network Function Virtualization , 2018, Comput. Networks.

[25]  Wolfgang Kellerer,et al.  Special Issue on Artificial Intelligence and Machine Learning for Networking and Communications , 2019, IEEE J. Sel. Areas Commun..

[26]  Raouf Boutaba,et al.  Topology-Aware Prediction of Virtual Network Function Resource Requirements , 2017, IEEE Transactions on Network and Service Management.

[27]  Djamal Zeghlache,et al.  VNF Placement and Chaining in Distributed Cloud , 2016, 2016 IEEE 9th International Conference on Cloud Computing (CLOUD).

[28]  Wolfgang Kellerer,et al.  Adaptable and Data-Driven Softwarized Networks: Review, Opportunities, and Challenges , 2019, Proceedings of the IEEE.

[29]  Jae-Hyoung Yoo,et al.  Machine Learning based Link State Aware Service Function Chaining , 2019, 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS).

[30]  Andrew Hines,et al.  5G network slicing using SDN and NFV- A survey of taxonomy, architectures and future challenges , 2019, Comput. Networks.

[31]  Stanislav Lange,et al.  Survey of Performance Acceleration Techniques for Network Function Virtualization , 2019, Proceedings of the IEEE.

[32]  Tarik Taleb,et al.  Service Function Chaining in Next Generation Networks: State of the Art and Research Challenges , 2017, IEEE Communications Magazine.

[33]  Adlen Ksentini,et al.  On evaluating different trends for virtualized and SDN-ready mobile network , 2017, 2017 IEEE 6th International Conference on Cloud Networking (CloudNet).

[34]  Djamal Zeghlache,et al.  A Dynamic Programming Algorithm for Joint VNF Placement and Chaining , 2016, CAN@CoNEXT.

[35]  Juan Felipe Botero,et al.  Resource Allocation in NFV: A Comprehensive Survey , 2016, IEEE Transactions on Network and Service Management.

[36]  F. Richard Yu,et al.  A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges , 2019, IEEE Communications Surveys & Tutorials.

[37]  Raouf Boutaba,et al.  A comprehensive survey on machine learning for networking: evolution, applications and research opportunities , 2018, Journal of Internet Services and Applications.

[38]  Raouf Boutaba,et al.  On orchestrating virtual network functions , 2015, 2015 11th International Conference on Network and Service Management (CNSM).

[39]  Jean C. Walrand,et al.  Knowledge-Defined Networking: Modelització de la xarxa a través de l’aprenentatge automàtic i la inferència , 2016 .