The Moulin–Shenker rule

The Moulin–Shenker rule is a non-linear solution concept for solving heterogeneous cost sharing problems. It is the unique continuous rule with the properties scale invariance, bounds on cost shares and self-consistency.

[1]  William W. Sharkey,et al.  Potential, Consistency, and Cost Allocation Prices , 2004, Math. Oper. Res..

[2]  Hervé Moulin,et al.  Cost Sharing under Increasing Returns: A Comparison of Simple Mechanisms , 1996 .

[3]  M. Shubik Incentives, Decentralized Control, the Assignment of Joint Costs and Internal Pricing , 1962 .

[4]  Van Kolpin Equitable Nonlinear Price Regulation: An Alternative Approach to Serial Cost Sharing , 1998 .

[5]  Stef Tijs,et al.  Serial cost sharing methods for multi-commodity situations , 1998 .

[6]  Maurice Koster,et al.  Concave and convex serial cost sharing , 2002 .

[7]  Elena Yanovskaya,et al.  Serial cost sharing , 2006 .

[8]  Hans Peters,et al.  Characterizing the Nash and Raiffa Bargaining Solutions by Disagreement Point Axioms , 1991, Math. Oper. Res..

[9]  W. Thomson The Consistency Principle , 1989 .

[10]  H. Moulin,et al.  Average Cost Pricing versus Serial Cost Sharing: An Axiomatic Comparison , 1994 .

[11]  Van Kolpin,et al.  Bayesian serial cost sharing , 2005, Math. Soc. Sci..

[12]  William W. Sharkey,et al.  Cost allocation , 1996 .

[13]  Hans Peters,et al.  Chapters in Game Theory , 2004 .

[14]  François Maniquet Allocation Rules for a Commonly Owned Technology: The Average Cost Lower Bound , 1996 .

[15]  Eric J. Friedman,et al.  Paths and consistency in additive cost sharing , 2004, Int. J. Game Theory.

[16]  Maurice Koster Heterogeneous cost sharing, the directional serial rule , 2006, Math. Methods Oper. Res..

[17]  H. Moulin,et al.  Strategyproof sharing of submodular costs:budget balance versus efficiency , 2001 .

[18]  Michel Truchon,et al.  Monotonicity and Bounds for Cost Shares under the Path Serial Rule , 2002 .

[19]  Hervé Moulin,et al.  Axiomatic cost and surplus sharing , 2002 .

[20]  Louis J. Billera,et al.  Allocation of Shared Costs: A Set of Axioms Yielding A Unique Procedure , 1982, Math. Oper. Res..

[21]  E. Kalai Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons , 1977 .

[22]  Yves Sprumont Ordinal Cost Sharing , 1998 .

[23]  L. Shapley,et al.  Values of Non-Atomic Games , 1974 .

[24]  Jens Leth Hougaard,et al.  The stand-alone test and decreasing serial cost sharing , 2000 .

[25]  H. Young Cost allocation : methods, principles, applications , 1985 .

[26]  Yair Tauman,et al.  Demand Compatible Equitable Cost Sharing Prices , 1982, Math. Oper. Res..

[27]  Peter Sudhölter,et al.  Axiomatizations of Game Theoretical Solutions for One-Output Cost Sharing Problems☆ , 1998 .

[28]  Eric J. Friedman,et al.  Three Methods to Share Joint Costs or Surplus , 1999 .

[29]  Hervé Moulin,et al.  On demand responsiveness in additive cost sharing , 2005, J. Econ. Theory.

[30]  H. Moulin,et al.  Serial Cost Sharing , 1992 .

[31]  Ori Haimanko,et al.  Partially Symmetric Values , 2000, Math. Oper. Res..

[32]  Maurice Koster,et al.  Sharing Variable Returns of Cooperation , 2004 .

[33]  Jens Leth Hougaard,et al.  Mixed serial cost sharing , 2001, Math. Soc. Sci..

[34]  W. Thomson Consistent Allocation Rules , 1996 .