GPAbin: unifying visualizations of multiple imputations for missing values

Multiple imputation is a well-established technique for analyzing missing data. Multiple imputed data sets are obtained and analyzed separately using standard complete data techniques. The estimate...

[1]  Catherine Plaisant,et al.  Visualizing Missing Data: Graph Interpretation User Study , 2005, INTERACT.

[2]  Julie Josse,et al.  MIMCA: multiple imputation for categorical variables with multiple correspondence analysis , 2015, Statistics and Computing.

[3]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[4]  Peter Filzmoser,et al.  Exploring incomplete data using visualization techniques , 2012, Adv. Data Anal. Classif..

[5]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[6]  Sara Johansson To identify what is not there: A definition of missingness patterns and evaluation of missing value visualization , 2019, Inf. Vis..

[7]  J. Graham,et al.  How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory , 2007, Prevention Science.

[8]  J. Josse,et al.  missMDA: A Package for Handling Missing Values in Multivariate Data Analysis , 2016 .

[9]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[10]  A. Agresti An introduction to categorical data analysis , 1997 .

[11]  Pieter M. Kroonenberg,et al.  Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis , 2014, J. Classif..

[12]  Stef van Buuren,et al.  Flexible Imputation of Missing Data , 2012 .

[13]  R. Sibson Studies in the Robustness of Multidimensional Scaling: Procrustes Statistics , 1978 .

[14]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[15]  Eric J. Beh,et al.  Correspondence Analysis: Theory, Practice and New Strategies , 2014 .

[16]  John C. Gower,et al.  Understanding Biplots: Gower/Understanding Biplots , 2011 .

[17]  Victor Thiessen,et al.  Assessing the Quality of Survey Data , 2012 .

[18]  Joslin L. Moore,et al.  The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance , 2005 .

[19]  D. Rubin,et al.  Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse , 1986 .

[20]  John C. Gower,et al.  Better biplots , 2009, Comput. Stat. Data Anal..

[21]  Lena Osterhagen,et al.  Multiple Imputation For Nonresponse In Surveys , 2016 .