Degree spectra and computable dimensions in algebraic structures
暂无分享,去创建一个
Arkadii M. Slinko | Denis R. Hirschfeldt | Richard A. Shore | Bakhadyr Khoussainov | B. Khoussainov | R. Shore | A. Slinko | D. Hirschfeldt
[1] A. Nerode,et al. Effective content of field theory , 1979 .
[2] Terrence Millar. Recursive Categoricity and Persistence , 1986, J. Symb. Log..
[3] Denis R. Hirschfeldt,et al. A computably categorical structure whose expansion by a constant has infinite computable dimension , 2003, J. Symb. Log..
[4] George W. Polites,et al. An introduction to the theory of groups , 1968 .
[5] Alexandre Ivanov,et al. FINITELY AXIOMATIZABLE THEORIES (Siberian School of Algebra and Logic) , 1999 .
[6] Alan H. Mekler. Stability of Nilpotent Groups of Class 2 and Prime Exponent , 1981, J. Symb. Log..
[7] Valentina S. Harizanov. The Possible Turing Degree of the Nonzero Member in a Two Element Degree Spectrum , 1993, Ann. Pure Appl. Log..
[8] Richard A. Shore,et al. Computably categorical structures and expansions by constants , 1999, Journal of Symbolic Logic.
[9] R. Soare. Recursively enumerable sets and degrees , 1987 .
[10] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.
[11] Julia F. Knight,et al. Degrees coded in jumps of orderings , 1986, Journal of Symbolic Logic.
[12] S. Goncharov. Countable Boolean Algebras and Decidability , 1997 .
[13] Denis R. Hirschfeldt. Degree spectra of relations on structures of finite computable dimension , 2002, Ann. Pure Appl. Log..
[14] Richard A. Shore,et al. Computable Isomorphisms, Degree Spectra of Relations, and Scott Families , 1998, Ann. Pure Appl. Log..
[15] Wilfrid Hodges,et al. Model Theory: The existential case , 1993 .
[16] Jeffrey B. Remmel,et al. Questions in computable algebra and combinatorics , 1999 .
[17] R. Tennant. Algebra , 1941, Nature.
[18] Jeffrey B. Remmel. Recursively categorical linear orderings , 1981 .
[19] R. Camerlo,et al. The completeness of the isomorphism relation for countable Boolean algebras , 2000 .
[20] Alexander S. Kechris,et al. New Directions in Descriptive Set Theory , 1999, Bulletin of Symbolic Logic.
[21] A. T. Nurtazin,et al. Strong and weak constructivization and computable families , 1974 .
[22] S. S. Goncharov,et al. The quantity of nonautoequivalent constructivizations , 1977 .
[23] Stephan Wehner,et al. Enumerations, countable structures and Turing degrees , 1998 .
[24] Theodore A. Slaman,et al. Relative to any nonrecursive set , 1998 .
[25] Richard A. Shore,et al. Models and Computability: Effective Model Theory: The Number of Models and Their Complexity , 1999 .
[26] S. S. Goncharov,et al. Autostability of models , 1980 .
[27] Greg Hjorth,et al. Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..
[28] Verena H. Dyson. Review: A. I. Mal'cev, (Ob odnorn sootvetstvii mezdu kol'cami i grupparni):On a Correspondence Between Rings and Groups , 1965 .
[29] Denis R. Hirschfeldt. Degree spectra of relations on computable structures in the presence of Δ20 isomorphisms , 2002, Journal of Symbolic Logic.
[30] N. S. Romanovskii,et al. Nilpotent groups of finite algorithmic dimension , 1989 .
[31] S. S. Goncharov,et al. Problem of the number of non-self-equivalent constructivizations , 1980 .