Disentangling the Cosmic Web. I. Morphology of Isodensity Contours

We apply Minkowski functionals and various derived measures to decipher the morphological properties of large-scale structure seen in simulations of gravitational evolution. Minkowski functionals of isodensity contours serve as tools to test global properties of the density field. Furthermore, we identify coherent objects at various threshold levels and calculate their partial Minkowski functionals. We propose a set of two derived dimensionless quantities, planarity and filamentarity, which reduce the morphological information in a simple and intuitive way. Several simulations of the gravitational evolution of initial power-law spectra provide a framework for systematic tests of our method.

[1]  H. Feldman,et al.  Minkowski functionals and cluster analysis for CMB maps , 1998, astro-ph/9809238.

[2]  B. Sathyaprakash,et al.  Morphology of Clusters and Superclusters in N-Body Simulations of Cosmological Gravitational Clustering , 1998, astro-ph/9805285.

[3]  B. Sathyaprakash,et al.  Shapefinders: A New Shape Diagnostic for Large-Scale Structure , 1998, astro-ph/9801053.

[4]  A. Kosowsky,et al.  Minkowski functional description of microwave background Gaussianity , 1997, astro-ph/9710164.

[5]  S. Shandarin,et al.  Detection of Network Structure in the Las Campanas Redshift Survey , 1997, astro-ph/9705155.

[6]  T. Buchert,et al.  Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.

[7]  B. Sathyaprakash,et al.  Probing Large-Scale Structure Using Percolation and Genus Curves , 1996, astro-ph/9612029.

[8]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[9]  S. Shandarin,et al.  Universality of the Network and Bubble Topology in Cosmological Gravitational Simulations , 1995, astro-ph/9509052.

[10]  P. Coles,et al.  Approximation methods for non-linear gravitational clustering , 1995, astro-ph/9505005.

[11]  Three-dimensional shape statistics: Methodology , 1995 .

[12]  J. L. Pauls,et al.  Hierarchical pancaking: why the Zel’dovich approximation describes coherent large-scale structure in N-body simulations of gravitational clustering , 1994, astro-ph/9408019.

[13]  A. Klypin,et al.  Percolation technique for galaxy clustering , 1993 .

[14]  A. Melott,et al.  Controlled experiments in cosmological gravitational clustering , 1993 .

[15]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[16]  A. Babul,et al.  A quantitative measure of structure in the three-dimensional galaxy distribution : sheets and filaments , 1992 .

[17]  J. Richard Gott,et al.  A quantitative approach to the topology of large-scale structure , 1987 .

[18]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[19]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[20]  J. Einasto,et al.  Cluster analysis of the nonlinear evolution of large-scale structure in an axion/gravitino/photino-dominated universe , 1983 .

[21]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[22]  H. Hadwiger Altes und Neues über konvexe Körper , 1955 .

[23]  H. Minkowski Volumen und Oberfläche , 1903 .

[24]  A. H. Jarrett,et al.  A New Astronomy , 1898, Nature.

[25]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[26]  M. W. Crofton,et al.  VII. On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus , 1868, Philosophical Transactions of the Royal Society of London.