Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing

Abstract Lithium solid-state batteries (SSBs) are considered as a promising solution to the safety issues and energy density limitations of state-of-the-art lithium-ion batteries. Recently, the possibility of developing practical SSBs has emerged thanks to striking advances at the level of materials; such as the discovery of new highly-conductive solid-state electrolytes. Consequently, the focus in research has progressively shifted towards the integration of the various components, the battery's functionality at full cell level, and the scalability of the fabrication processes. Considering these points, the development of SSBs still faces formidable challenges. This review covers the recent advances in SSB development, stressing the importance of full cell integration. The most relevant materials and fabrication processes are briefly summarized and their potential applications in SSBs are examined. The main challenges and strategies for full cell integration are then discussed highlighting the most promising materials and the best suited processing techniques. Particular attention is paid on the mutual compatibility of the cell components, the properties of the interfaces within the cell (anode-electrolyte, cathode-electrolyte, intra-electrolyte) and the strategies applied to stabilize and minimize the resistance of these interfaces via compatible processing.

[1]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .

[2]  Qian Sun,et al.  Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. , 2019, ACS applied materials & interfaces.

[3]  G. Guan,et al.  Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review , 2019, Renewable and Sustainable Energy Reviews.

[4]  Xian‐Xiang Zeng,et al.  Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries , 2018, Electrochemical Energy Reviews.

[5]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[6]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[7]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[8]  S. Yoo,et al.  A spin-coated solid polymer electrolyte for all-solid-state rechargeable thin-film lithium polymer batteries , 2006 .

[9]  C. Randall,et al.  Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity , 2017 .

[10]  Xueliang Sun,et al.  Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application , 2014 .

[11]  Hongzheng Zhu,et al.  Toward 3D Solid-State Batteries via Atomic Layer Deposition Approach , 2018, Front. Energy Res..

[12]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  Lucienne Buannic,et al.  Garnet–Polymer Composite Electrolytes: New Insights on Local Li-Ion Dynamics and Electrodeposition Stability with Li Metal Anodes , 2019, ACS Applied Energy Materials.

[14]  A. Manthiram,et al.  Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries , 2020 .

[15]  Donald J. Siegel,et al.  Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review , 2018, Ionics.

[16]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[17]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[18]  Liangting Cai,et al.  Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability , 2018 .

[19]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[20]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[21]  Danielle M. Butts,et al.  Sulfide Solid Electrolytes for Lithium Battery Applications , 2018, Advanced Energy Materials.

[22]  Wolfgang Haselrieder,et al.  Characterization of the calendering process for compaction of electrodes for lithium-ion batteries , 2017 .

[23]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[24]  V. De Andrade,et al.  Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries , 2019, Journal of Materials Chemistry A.

[25]  N. J. Dudney,et al.  Solid-state thin-film rechargeable batteries , 2005 .

[26]  Sehee Lee,et al.  Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor , 2014 .

[27]  K. Zaghib,et al.  Li 4 Ti 5 O 12 and LiMn 2 O 4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications , 2016 .

[28]  D. Hotza,et al.  Manufacturing porous ceramic materials by tape casting—A review , 2017 .

[29]  M. Osada,et al.  High performance silicon-based anodes in solid-state lithium batteries , 2014 .

[30]  A. Llordés,et al.  Improved Electromechanical Stability of the Li Metal/Garnet Ceramic Interface by a Solvent-Free Deposited OIPC Soft Layer , 2021 .

[31]  K. Kar,et al.  A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery. , 2017, ACS applied materials & interfaces.

[32]  Xinling Zhang,et al.  Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries , 2018, ACS Applied Energy Materials.

[33]  Xin Guo,et al.  Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. , 2017, ACS applied materials & interfaces.

[34]  Kota Suzuki,et al.  Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes , 2016 .

[35]  JongTae Yoo,et al.  Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing , 2018 .

[36]  M. Wagemaker,et al.  Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface , 2017, Nature Communications.

[37]  M. Wohlfahrt‐Mehrens,et al.  Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application , 2017 .

[38]  Chen‐Zi Zhao,et al.  Artificial Interphases for Highly Stable Lithium Metal Anode , 2019, Matter.

[39]  Jong‐Won Lee,et al.  Solid‐State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry , 2019, ChemElectroChem.

[40]  Yunhui Huang,et al.  g-C3N4: An Interface Enabler for Solid-State Lithium Metal Batteries. , 2019, Angewandte Chemie.

[41]  Bing Sun,et al.  At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries , 2015 .

[42]  K. Zaghib,et al.  Comprehensive Review of Polymer Architecture for All-Solid-State Lithium Rechargeable Batteries , 2020, Materials.

[43]  Yunhui Huang,et al.  Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures , 2020 .

[44]  R. Li,et al.  Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte , 2018, Solid State Ionics.

[45]  P. Cui,et al.  Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode , 2019, Electrochimica Acta.

[46]  N. Dudney,et al.  Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes for Lithium Ion Batteries , 2011 .

[47]  Lixia Yuan,et al.  Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[48]  A. Manthiram,et al.  A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte , 2020 .

[49]  Lixin Qiao,et al.  Unprecedented Improvement of Single Li‐Ion Conductive Solid Polymer Electrolyte Through Salt Additive , 2020, Advanced Functional Materials.

[50]  Kwang Man Kim,et al.  Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica , 2013 .

[51]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[52]  Zachary D. Hood,et al.  Lithium-film ceramics for solid-state lithionic devices , 2020, Nature Reviews Materials.

[53]  Heng Zhang,et al.  Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte , 2014 .

[54]  C. Dong,et al.  Investigation of structure and electrical properties of Li0.5La0.5TiO3 ceramics via microwave sintering , 2009 .

[55]  V. Roddatis,et al.  Microstructure and ionic conductivity of LLTO thin films: Influence of different substrates and excess lithium in the target , 2015 .

[56]  Young Jin Nam,et al.  Issues and Challenges for Bulk‐Type All‐Solid‐State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes , 2015 .

[57]  J. Sann,et al.  Redox-active cathode interphases in solid-state batteries , 2017 .

[58]  Peter Zapol,et al.  Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal , 2019, Advanced Energy Materials.

[59]  T. Mallouk,et al.  Cold sintering process for fabrication of a high volumetric capacity Li4Ti5O12 anode , 2019, Materials Science and Engineering: B.

[60]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[61]  Peter Lamp,et al.  Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives , 2017 .

[62]  Andriy Kvasha,et al.  High Performance Polymer/Ionic Liquid Thermoplastic Solid Electrolyte Prepared by Solvent Free Processing for Solid State Lithium Metal Batteries , 2018, Membranes.

[63]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[64]  Yulin Ma,et al.  Interface Issues and Challenges in All‐Solid‐State Batteries: Lithium, Sodium, and Beyond , 2020, Advanced materials.

[65]  Meike Schneider,et al.  The Cathode Composition, A Key Player in the Success of Li-Metal Solid-State Batteries , 2019, The Journal of Physical Chemistry C.

[66]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[67]  Xiaoting Lin,et al.  Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries , 2020 .

[68]  Xiaoting Lin,et al.  Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries , 2020, Journal of Materials Chemistry A.

[69]  Venkataraman Thangadurai,et al.  Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .

[70]  Jaephil Cho,et al.  Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. , 2020, Angewandte Chemie.

[71]  Dawei Song,et al.  Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB , 2019, Energy Storage Materials.

[72]  P. Nealey,et al.  Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes , 2020 .

[73]  H. Wiemhöfer,et al.  Boron Trifluoride Anionic Side Groups in Polyphosphazene Based Polymer Electrolyte with Enhanced Interfacial Stability in Lithium Batteries , 2018, Polymers.

[74]  Yan‐Bing He,et al.  Constructing Effective Interfaces for Li1.5Al0.5Ge1.5(PO4)3 Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. , 2019, ACS applied materials & interfaces.

[75]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[76]  J. Rupp,et al.  Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors , 2016 .

[77]  O. Guillon,et al.  High-pressure field assisted sintering of half-cell for all-solid-state battery , 2019, Materials Letters.

[78]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[79]  Xiaoting Lin,et al.  Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries , 2020 .

[80]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[81]  R. Hausbrand,et al.  Interfacial instability of amorphous LiPON against lithium: A combined Density Functional Theory and spectroscopic study , 2017 .

[82]  Margaret A. Johns,et al.  Corrigendum: The OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies , 2017, Nature Communications.

[83]  Henghui Xu,et al.  Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. , 2018, Nano letters.

[84]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[85]  Xiaofei Yang,et al.  Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries , 2019, Advanced Energy Materials.

[86]  M. Lanagan,et al.  Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte , 2017 .

[87]  M. Wagemaker,et al.  Controlling the Lithium-Metal Growth To Enable Low-Lithium-Metal-Excess All-Solid-State Lithium-Metal Batteries , 2020, ACS Materials Letters.

[88]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[89]  Li-zhen Fan,et al.  3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. , 2018, ACS applied materials & interfaces.

[90]  B. Wei,et al.  Interfacial Engineering at Cathode/LATP Interface for High-Performance Solid-State Batteries , 2020, Journal of The Electrochemical Society.

[91]  Zhengkui Xu,et al.  Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting , 2009 .

[92]  A. Mauger,et al.  Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries , 2015, Nanomaterials.

[93]  Allen Pei,et al.  Effects of Polymer Coatings on Electrodeposited Lithium Metal. , 2018, Journal of the American Chemical Society.

[94]  Lucienne Buannic,et al.  Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy , 2019, Journal of Power Sources.

[95]  Andriy Kvasha,et al.  Synergy of Inorganic Fillers in Composite Thermoplastic Polymer/Ionic Liquid/LiTFSI Electrolytes , 2020, Journal of The Electrochemical Society.

[96]  Yang Shen,et al.  Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries , 2014 .

[97]  A. Remhof,et al.  Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7-3 xGa xLa3Zr2O12 Thin Films. , 2018, ACS applied materials & interfaces.

[98]  A. Hayashi,et al.  Recent progress on interface formation in all-solid-state batteries , 2017 .

[99]  D. M. Mattox Vacuum Evaporation and Vacuum Deposition , 1998 .

[100]  Kun Fu,et al.  Garnet Solid Electrolyte Protected Li-Metal Batteries. , 2017, ACS applied materials & interfaces.

[101]  Linda F. Nazar,et al.  New horizons for inorganic solid state ion conductors , 2018 .

[102]  Jing Guo,et al.  Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics , 2016 .

[103]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[104]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[105]  M. Anbu Kulandainathan,et al.  Characterization of poly(vinylidene fluoride–hexafluoropropylene) (PVdF–HFP) electrolytes complexed with different lithium salts , 2005 .

[106]  Diana Golodnitsky,et al.  On the Road to a Multi-Coaxial-Cable Battery: Development of a Novel 3D-Printed Composite Solid Electrolyte , 2019, Journal of The Electrochemical Society.

[107]  P. He,et al.  Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‐State Li Batteries , 2018 .

[108]  J. Sakamoto More pressure needed , 2019, Nature Energy.

[109]  Q. Ma,et al.  About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. , 2016, ACS applied materials & interfaces.

[110]  Shizhao Xiong,et al.  Design of a Multifunctional Interlayer for NASCION‐Based Solid‐State Li Metal Batteries , 2020, Advanced Functional Materials.

[111]  Yue Wu,et al.  Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. , 2017, ACS applied materials & interfaces.

[112]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[113]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[114]  S. Nishimura,et al.  Lithium ion conductive properties of aliphatic polycarbonate , 2014 .

[115]  M. Xiao,et al.  Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance , 2020 .

[116]  Biyi Xu,et al.  Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2 , 2017 .

[117]  David G. Mackanic,et al.  Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries , 2018, Materials Today Nano.

[118]  Il-Doo Kim,et al.  Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries , 2014 .

[119]  Lixin Qiao,et al.  Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. , 2020, The journal of physical chemistry letters.

[120]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[121]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[122]  M. Gobet,et al.  An alternative route to single ion conductivity using multi-ionic salts , 2018 .

[123]  Yo Kobayashi,et al.  Fabrication of All-Solid-State Lithium Polymer Secondary Batteries Using Al2O3-Coated LiCoO2 , 2005 .

[124]  Lei Zhang,et al.  Long lifespan lithium metal anodes enabled by Al2O3 sputter coating , 2018 .

[125]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[126]  Jianyong Yu,et al.  Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries , 2019 .

[127]  R. Eichel,et al.  Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility. , 2018, ACS applied materials & interfaces.

[128]  M. Winter,et al.  Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials , 2014 .

[129]  T. Chartier,et al.  Aqueous tape casting of alumina substrates , 1993 .

[130]  Y. Jung,et al.  Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries , 2017 .

[131]  P. Barpanda,et al.  An Overview of Nanostructured Li-based Thin Film Micro-batteries , 2018, Proceedings of the Indian National Science Academy.

[132]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[133]  S. Uhlenbruck,et al.  Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries , 2016 .

[134]  P. Hagenmuller,et al.  Characterization and electrical behavior of new lithium chalcoborate thin films , 1985 .

[135]  Jun Lu,et al.  Understanding the Reactivity of a Thin Li1.5Al0.5Ge1.5(PO4)3 Solid‐State Electrolyte toward Metallic Lithium Anode , 2020, Advanced Energy Materials.

[136]  B. Scrosati,et al.  SYNTHESIS AND CHARACTERIZATION OF HIGHLY CONDUCTING GEL ELECTROLYTES , 1994 .

[137]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[138]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[139]  G. Ceder,et al.  Electrodeposition and Mechanical Stability at Lithium-Solid Electrolyte Interface during Plating in Solid-State Batteries , 2020 .

[140]  Nicola Boaretto,et al.  Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes , 2016 .

[141]  Liquan Chen,et al.  Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode , 2020 .

[142]  M. Ge,et al.  Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature , 2020 .

[143]  Y. Meng,et al.  Key Issues Hindering a Practical Lithium-Metal Anode , 2019, Trends in Chemistry.

[144]  N. García,et al.  Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes , 2019, Polymers.

[145]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[146]  C. Iojoiu,et al.  Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes , 2019, Molecular Systems Design & Engineering.

[147]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[148]  S. Passerini,et al.  Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte , 2019, Energy Storage Materials.

[149]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[150]  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[151]  Jianming Zheng,et al.  Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. , 2017, The journal of physical chemistry letters.

[152]  Kun Fu,et al.  Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. , 2017, Angewandte Chemie.

[153]  L. Nazar,et al.  A New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. , 2019, Journal of the American Chemical Society.

[154]  G. Gelinck,et al.  Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors , 2016, Scientific Reports.

[155]  Howard A. Kuhn,et al.  PSEUDO-ISOSTATIC POWDER METALLURGY DENSIFICATION PROCESS , 1983 .

[156]  F. La Mantia,et al.  Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface. , 2019, ACS applied materials & interfaces.

[157]  Masahiro Tatsumisago,et al.  Preparation and ionic conductivity of Li7P3S11 − z glass-ceramic electrolytes , 2010 .

[158]  A. Aguadero,et al.  The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance , 2020, Journal of Materials Chemistry A.

[159]  J. Tarascon,et al.  A New Approach to Develop Safe All‐Inorganic Monolithic Li‐Ion Batteries , 2011 .

[160]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[161]  B. Scrosati,et al.  Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries , 2003 .

[162]  Xiaodong Wu,et al.  Corrosion Suppression of Aluminum Metal by Optimizing Lithium Salt Concentration in Solid-State Imide Salt-Based Polymer Plastic Crystal Electrolyte Membrane , 2018, ACS Applied Energy Materials.

[163]  Ru‐Shi Liu,et al.  Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. , 2020, ACS applied materials & interfaces.

[164]  R. Friend,et al.  Harnessing singlet exciton fission to break the Shockley–Queisser limit , 2017 .

[165]  Lei Cheng,et al.  Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films , 2015 .

[166]  Kenta Yamazaki,et al.  Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. , 2014, Chemical communications.

[167]  M. Armand,et al.  Self-Healing Janus Interfaces for High-Performance LAGP-Based Lithium Metal Batteries , 2020 .

[168]  Qiang Xu,et al.  A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery , 2016 .

[169]  F. Bella,et al.  Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries , 2016, Scientific Reports.

[170]  S. Lascaud,et al.  Lithium polymer battery development for electric vehicle application , 1997 .

[171]  D. Brandell,et al.  Electrochemical-mechanical modeling of solid polymer electrolytes: Impact of mechanical stresses on Li-ion battery performance , 2019, Electrochimica Acta.

[172]  B. Scrosati,et al.  Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes , 1995 .

[173]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[174]  Henghui Xu,et al.  Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[175]  Xin Guo,et al.  Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. , 2018, ACS applied materials & interfaces.

[176]  B. Scrosati,et al.  Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes , 2001 .

[177]  Norbert Willenbacher,et al.  Prozess‐ und Produktentwicklung von Elektroden für Li‐Ionen‐Zellen , 2014 .

[178]  Qian Sun,et al.  Rational Design of Atomic‐Layer‐Deposited LiFePO4 as a High‐Performance Cathode for Lithium‐Ion Batteries , 2014, Advanced materials.

[179]  Rachid Meziane,et al.  Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries , 2011 .

[180]  Xiao‐Qing Yang,et al.  Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research , 2019, Advanced materials.

[181]  Kevin N. Wood,et al.  Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12 , 2017 .

[182]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[183]  L. Curtiss,et al.  The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes , 2020, Journal of The Electrochemical Society.

[184]  Shaomao Xu,et al.  Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface , 2020 .

[185]  S. Ito,et al.  Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .

[186]  C. Delmas,et al.  Effects of aluminum on the structural and electrochemical properties of LiNiO2 , 2003 .

[187]  T. Kyu,et al.  Ionic Conductivity in Relation to Ternary Phase Diagram of Poly(ethylene oxide), Succinonitrile, and Lithium Bis(trifluoromethane)sulfonimide Blends , 2012 .

[188]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[189]  J. Janek,et al.  Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. , 2019, ACS applied materials & interfaces.

[190]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[191]  Jonas Mindemark,et al.  Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries , 2019, Journal of Power Sources.

[192]  P. Bruce,et al.  Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes , 1984 .

[193]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[194]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[195]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[196]  Liquan Chen,et al.  A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. , 2020, Chemical communications.

[197]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[198]  Jeong-Hee Choi,et al.  Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix , 2015 .

[199]  T. Zhao,et al.  A novel PEO|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. , 2019, ACS applied materials & interfaces.

[200]  Yo Kobayashi,et al.  High-performance genuine lithium polymer battery obtained by fine-ceramic-electrolyte coating of LiCoO2 , 2005 .

[201]  Piercarlo Mustarelli,et al.  PEO-based composite polymer electrolytes , 1998 .

[202]  Volker L. Deringer,et al.  Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6. , 2019, Journal of the American Chemical Society.

[203]  Shenglong Wang,et al.  Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis , 2019, Journal of Alloys and Compounds.

[204]  T. Chartier,et al.  Drying mechanisms and stress development in aqueous alumina tape casting , 2005 .

[205]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[206]  Q. Shen,et al.  Cathode/electrolyte interface engineering via wet coating and hot pressing for all-solid-state lithium battery , 2019, Solid State Ionics.

[207]  Xin Guo,et al.  Size effect in nanocrystalline lithium-ion conducting perovskite: Li0.30La0.57TiO3 , 2017 .

[208]  Wensheng Yang,et al.  Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries , 2010 .

[209]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[210]  Ganesan Nagasubramanian,et al.  Corrosion of Lithium‐Ion Battery Current Collectors , 1999 .

[211]  K. Zaghib,et al.  Lithium battery with solid polymer electrolyte based on comb-like copolymers , 2015 .

[212]  V. Roddatis,et al.  Enhancement of the Grain Boundary Conductivity in Ceramic Li0.34La0.55TiO3 Electrolytes in a Moisture‐Free Processing Environment , 2014 .

[213]  M. Winter,et al.  Improving the NMC111∣Polymer Electrolyte Interface by Cathode Composition and Processing , 2020 .

[214]  Gunther Reinhart,et al.  All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production , 2018 .

[215]  Aijun Li,et al.  Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte , 2019, Nano Energy.

[216]  Phl Peter Notten,et al.  Atomic layer deposition for nanostructured Li-ion batteries , 2012 .

[217]  Karim Zaghib,et al.  Application of Magnetic Resonance Techniques to the In Situ Characterization of Li-Ion Batteries: A Review , 2020, Materials.

[218]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[219]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[220]  Keun-Ho Choi,et al.  Current Status and Challenges in Printed Batteries: Toward Form Factor-Free, Monolithic Integrated Power Sources , 2018 .

[221]  Qian Sun,et al.  Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries , 2019, ACS Energy Letters.

[222]  Xi Jiang,et al.  Nanostructured Single-Ion-Conducting Hybrid Electrolytes Based on Salty Nanoparticles and Block Copolymers , 2017 .

[223]  Haihui Wang,et al.  Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes , 2019, ChemElectroChem.

[224]  Yang-Kook Sun,et al.  Electrochemical behavior and passivation of current collectors in lithium-ion batteries , 2011 .

[225]  Seokgwang Doo,et al.  A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte , 2014 .

[226]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[227]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[228]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[229]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[230]  Arumugam Manthiram,et al.  Electrode–electrolyte interfaces in lithium-based batteries , 2018 .

[231]  C. Stoldt,et al.  Improving NASICON Sinterability through Crystallization under High-Frequency Electrical Fields , 2016, Front. Energy Res..

[232]  Senentxu Lanceros-Méndez,et al.  Polymer composites and blends for battery separators: State of the art, challenges and future trends , 2015 .

[233]  M. Armand,et al.  Building better batteries , 2008, Nature.

[234]  Youngsin Park,et al.  Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries , 2014 .

[235]  K. Zaghib,et al.  Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability , 2020 .

[236]  Yo Kobayashi,et al.  Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2. , 2013, ACS applied materials & interfaces.

[237]  T. Abe,et al.  Lithium Ion Transfer at the Interface between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte , 2004 .

[238]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[239]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[240]  Chengwei Wang,et al.  A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics , 2019, Energy Storage Materials.

[241]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[242]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[243]  M. Sanjuán,et al.  Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration , 2013 .

[244]  Ming Liu,et al.  A review of gassing behavior in Li4Ti5O12-based lithium ion batteries , 2017 .

[245]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[246]  A. Hintennach,et al.  Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3 , 2015 .

[247]  David E.J. Armstrong,et al.  Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries , 2018 .

[248]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[249]  A. Yamada,et al.  All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON , 2009 .

[250]  Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte , 2018 .

[251]  S. Kondo,et al.  New lithium ion conductors based on Li2S-SiS2 system , 1992 .

[252]  Xiaoting Lin,et al.  Manipulating Interfacial Nanostructure to Achieve High‐Performance All‐Solid‐State Lithium‐Ion Batteries , 2019, Small Methods.

[253]  Dongwook Shin,et al.  Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries , 2015 .

[254]  Y. Aihara,et al.  The influence of the carbonate species on LiNi 0.8 Co 0.15 Al 0.05 O 2 surfaces for all-solid-state lithium ion battery performance , 2014 .

[255]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[256]  Candace K. Chan,et al.  Preparation of Nano- and Microstructured Garnet Li7La3Zr2O12 Solid Electrolytes for Li-Ion Batteries via Cellulose Templating , 2016 .

[257]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[258]  A. Mauger,et al.  Pulsed Laser Deposited Films for Microbatteries , 2019, Coatings.

[259]  Jie Li,et al.  Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. , 2014, ChemSusChem.

[260]  T. Leichtweiss,et al.  Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[261]  Eongyu Yi,et al.  Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles , 2017 .

[262]  J. Sakamoto,et al.  Controlling Ionic Transport through the PEO-LiTFSI/LLZTO Interface , 2019, The Electrochemical Society Interface.

[263]  Benji Maruyama,et al.  3D Printable Ceramic–Polymer Electrolytes for Flexible High‐Performance Li‐Ion Batteries with Enhanced Thermal Stability , 2017 .

[264]  Yan‐Bing He,et al.  In-situ Construction of An Ultra-stable Conductive Composite Interface for High-Voltage All-Solid-State Lithium Metal Batteries. , 2020, Angewandte Chemie.

[265]  D. Aurbach,et al.  Studies of the Electrochemical Behavior of LiNi0.80Co0.15Al0.05O2 Electrodes Coated with LiAlO2 , 2017 .

[266]  Sang‐young Lee,et al.  Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries , 2020 .

[267]  F. Ding,et al.  Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[268]  Xiaoting Lin,et al.  Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition , 2018, Nano Energy.

[269]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[270]  Felix H. Richter,et al.  Properties of the Interphase formed between Argyrodite-type Li6PS5Cl and Polymer-based PEO10:LiTFSI. , 2019, ACS applied materials & interfaces.

[271]  H. Yamada,et al.  Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention , 2017 .

[272]  P. Greil,et al.  Review: aqueous tape casting of ceramic powders , 1995 .

[273]  H. Iwahara,et al.  Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .

[274]  Y. Tominaga,et al.  A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature , 2016 .

[275]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[276]  Ya‐Xia Yin,et al.  Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery , 2019, Advanced Functional Materials.

[277]  C. Nan,et al.  Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries , 2019, Energy Storage Materials.

[278]  C. Delmas,et al.  The cycling properties of the LixNi1-yCoyO2 electrode , 1993 .

[279]  Jessica K. Dudoff,et al.  Cathode interface compatibility of amorphous LiMn2O4 (LMO) and Li7La3Zr2O12 (LLZO) characterized with thin-film solid state electrochemical cells. , 2020, ACS applied materials & interfaces.

[280]  P. Geffroy,et al.  Tape casting of preceramic polymers toward advanced ceramics: A review , 2019, International Journal of Ceramic Engineering & Science.

[281]  J. Choi,et al.  Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery , 2017 .

[282]  Yayuan Liu,et al.  Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries , 2017, Science Advances.

[283]  R. Hausbrand,et al.  Characterization of the Interfaces in LiFePO4/PEO-LiTFSI Composite Cathodes and to the Adjacent Layers , 2019, Journal of The Electrochemical Society.

[284]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[285]  Michel Armand,et al.  Polymers with Ionic Conductivity , 1990 .

[286]  L. Deiner,et al.  Aerosol Jet Printed Polymer Composite Electrolytes for Solid‐State Li‐Ion Batteries , 2019, Advanced Engineering Materials.

[287]  M. Armand,et al.  Building Better Batteries in the Solid State: A Review , 2019, Materials.

[288]  K. Zaghib,et al.  Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte , 2017 .

[289]  M. Armand,et al.  All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. , 2015, ChemSusChem.

[290]  John B. Goodenough,et al.  Review—Solid Electrolytes in Rechargeable Electrochemical Cells , 2015 .

[291]  X. Sun,et al.  Interfaces in Garnet‐Based All‐Solid‐State Lithium Batteries , 2020, Advanced Energy Materials.

[292]  M. Armand,et al.  Challenges and Issues Facing Lithium Metal for Solid State Rechargeable Batteries , 2016 .

[293]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[294]  C. Yuan,et al.  Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries , 2017, Nanomaterials.

[295]  Jin Wook Kim,et al.  Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries , 2014, Scientific Reports.

[296]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[297]  Wei Liu,et al.  Stereolithography 3D Printing Solid Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries. , 2020, Nano letters.

[298]  Eongyu Yi,et al.  Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO) , 2016 .

[299]  Sylvie Grugeon,et al.  Poly(Ethylene Oxide)−LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing , 2020 .

[300]  Kaiming Liao,et al.  Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization , 2019, Energy & Environmental Science.

[301]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[302]  Bingbing Chen,et al.  Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. , 2018, Chemical Society reviews.

[303]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[304]  J. Kuebler,et al.  Comparison of aqueous and non-aqueous tape casting of fully stabilized ZrO2 suspensions , 2015 .

[305]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[306]  A Li-rich layered sulfide as cathode active material in all-solid-state Li-metal batteries. , 2020, ACS applied materials & interfaces.

[307]  J. M. López del Amo,et al.  Crystalline LiPON as a Bulk-Type Solid Electrolyte , 2021 .

[308]  M. Ling,et al.  Plasticized Polymer Composite Single Ion Conductors for Lithium Batteries , 2018 .

[309]  M. Nisula,et al.  Atomic Layer Deposition of Lithium Phosphorus Oxynitride , 2015 .

[310]  L. Deiner,et al.  Digital Printing of Solid‐State Lithium‐Ion Batteries , 2019, Advanced Engineering Materials.

[311]  E. Gutmanas,et al.  Cold sintering under high pressure , 1979 .

[312]  S. Roberts,et al.  Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries , 2020, Cell Reports Physical Science.

[313]  N. Imanishi,et al.  Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12 , 2015 .

[314]  J. Glenneberg,et al.  Impedance Spectroscopy Analysis of the Lithium Ion Transport through the Li7La3Zr2O12/P(EO)20Li Interface , 2017 .

[315]  K. Moeller Overview of battery systems , 2018 .

[316]  K. Takada,et al.  All-solid-state lithium battery with LiBH4 solid electrolyte , 2013 .

[317]  K. Zaghib,et al.  Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte , 2020, Advanced Materials Interfaces.

[318]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[319]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[320]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[321]  Nobuko Yoshimoto,et al.  Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions , 2003 .

[322]  W. Wieczorek,et al.  Effective medium theory in studies of conductivity of composite polymeric electrolytes , 1995 .

[323]  N. Dudney,et al.  Mechanical characterization of Lipon films using nanoindentation , 2011 .

[324]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[325]  M. Niederberger,et al.  Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery , 2019, Advanced materials.

[326]  T. Zhao,et al.  Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer , 2019, Journal of Power Sources.

[327]  Chunsheng Wang,et al.  Architectural design and fabrication approaches for solid-state batteries , 2018, MRS Bulletin.

[328]  Volker L. Deringer,et al.  Fast Lithium Ion Conduction in Lithium Phosphidoaluminates , 2019, Angewandte Chemie.

[329]  Xinhong Zhou,et al.  Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries , 2017 .

[330]  Yan‐Bing He,et al.  Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries , 2018, Journal of Power Sources.

[331]  A. Hayashi,et al.  An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol , 2019, Journal of Materials Chemistry A.

[332]  C. Angell,et al.  Concepts and conflicts in polymer electrolytes: The search for ion mobility , 2019, Electrochimica Acta.

[333]  Jie Lian,et al.  Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode , 2017 .

[334]  Xiqian Yu,et al.  Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. , 2014, ACS applied materials & interfaces.

[335]  Jun Ho Song,et al.  Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. , 2015, Nano letters.

[336]  L. Nicolais,et al.  A Review of Ceramic Sintering and Suggestions on Reducing Sintering Temperatures , 1997 .

[337]  Reza Rizvi,et al.  High‐Throughput Continuous Production of Shear‐Exfoliated 2D Layered Materials using Compressible Flows , 2018, Advanced materials.

[338]  R. Li,et al.  A versatile strategy for realizing flexible room-temperature all-solid-state battery through synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. , 2020, ACS applied materials & interfaces.

[339]  Li-zhen Fan,et al.  Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes , 2019 .

[340]  Daniel Brandell,et al.  High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature , 2015 .

[341]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[342]  Xuelin Yang,et al.  High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling , 2006 .

[343]  Shaofei Wang,et al.  Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. , 2018, Journal of the American Chemical Society.

[344]  Yo Kobayashi,et al.  Fabrication of High-Voltage, High-Capacity All-Solid-State Lithium Polymer Secondary Batteries by Application of the Polymer Electrolyte/Inorganic Electrolyte Composite Concept , 2005 .

[345]  J. D. Robertson,et al.  Nanocrystalline Li x Mn2 − y O 4 Cathodes for Solid‐State Thin‐Film Rechargeable Lithium Batteries , 1999 .

[346]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[347]  Chuanjian Zhang,et al.  Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. , 2013, ACS applied materials & interfaces.

[348]  Federico Bella,et al.  PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation , 2019 .

[349]  S. Sedlmaier,et al.  Editors' Choice—Understanding Chemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries , 2019, Journal of The Electrochemical Society.

[350]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[351]  C. Yoon,et al.  High-Energy Density Core–Shell Structured Li[Ni0.95Co0.025Mn0.025]O2 Cathode for Lithium-Ion Batteries , 2017 .

[352]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[353]  S. Passerini,et al.  Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface , 2000 .

[354]  G. Reinhart,et al.  Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries , 2019, Energy & Environmental Science.

[355]  P. Geffroy,et al.  Eco-friendly alumina suspensions for tape-casting process , 2017 .

[356]  L. Archer,et al.  Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode , 2020, Advanced materials.

[357]  Xiaogang Zhang,et al.  Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte-Based All-Solid-State Lithium-Sulfur Batteries by Atomic Layer Deposition. , 2019, Small.

[358]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[359]  A. Hayashi,et al.  Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte , 2012 .

[360]  Ming Xu,et al.  Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application , 2019, Electrochimica Acta.

[361]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[362]  Ismael Gracia,et al.  Li Metal Polymer Batteries , 2019, Solid Electrolytes for Advanced Applications.

[363]  S. Sedlmaier,et al.  Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study , 2018 .

[364]  K. Tadanaga,et al.  Preparation of lithium ion conductive Al-doped Li 7 La 3 Zr 2 O 12 thin films by a sol-gel process , 2015 .

[365]  Kazuo Murata,et al.  An overview of the research and development of solid polymer electrolyte batteries , 1995 .

[366]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[367]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[368]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[369]  D. Sadoway,et al.  All-Solid-State Lithium Battery Fitted with Polymer Electrolyte Enhanced by Solid Plasticizer and Conductive Ceramic Filler , 2018 .

[370]  E. Olevsky,et al.  The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering , 2017 .

[371]  Hajime Miyashiro,et al.  All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte , 2002 .

[372]  A. Hayashi,et al.  Mechanical properties of sulfide glasses in all-solid-state batteries , 2018, Journal of the Ceramic Society of Japan.

[373]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[374]  J. Chai,et al.  The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode , 2018, Journal of Power Sources.

[375]  S. Choudhury,et al.  Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study , 2020, Advanced Functional Materials.

[376]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[377]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[378]  Hongtao Qu,et al.  Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries. , 2018, ACS applied materials & interfaces.

[379]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[380]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[381]  N. Holzwarth,et al.  Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .

[382]  Y. Tominaga,et al.  Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes , 2016 .

[383]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[384]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[385]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[386]  K. Amine,et al.  Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries , 1997 .

[387]  Nicola Boaretto,et al.  Polymers: Opening Doors to Future Batteries , 2015 .

[388]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[389]  Zeya Huang,et al.  Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte , 2020 .

[390]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[391]  F. Aguesse,et al.  Designing Spinel Li4Ti5O12 Electrode as Anode Material for Poly(ethylene)oxide-Based Solid-State Batteries , 2021, Materials.

[392]  Mark A. Ratner,et al.  Dynamically disordered hopping, glass transition, and polymer electrolytes , 1995 .

[393]  Z. Shen,et al.  4-V flexible all-solid-state lithium polymer batteries , 2019, Nano Energy.

[394]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[395]  Jeong-Hee Choi,et al.  All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes , 2014 .

[396]  N. Yamasaki,et al.  A hydrothermal hot-pressing method: Apparatus and application , 1986 .

[397]  Z. Bi,et al.  Surface coating of LiMn2O4 cathodes with garnet electrolytes for improving cycling stability of solid lithium batteries , 2020 .

[398]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[399]  M. Finsterbusch Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention , 2016 .

[400]  A. Llordés,et al.  Importance of Composite Electrolyte Processing to Improve the Kinetics and Energy Density of Li Metal Solid-State Batteries , 2020 .

[401]  S. Kondo,et al.  Solid state batteries with sulfide-based solid electrolytes , 2004 .

[402]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[403]  Kazuaki Matsumoto,et al.  Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte , 2013 .

[404]  B. Pecquenard,et al.  Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance , 2011 .

[405]  Xiulin Fan,et al.  Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery , 2018, Science Advances.

[406]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[407]  M. Kovalenko,et al.  Ni–Al–Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries , 2018, RSC advances.

[408]  K. Tadanaga,et al.  Effects of Conductive Additives in Composite Positive Electrodes on Charge-Discharge Behaviors of All-Solid-State Lithium Secondary Batteries , 2005 .

[409]  S. Choudhury,et al.  Confining electrodeposition of metals in structured electrolytes , 2018, Proceedings of the National Academy of Sciences.

[410]  M. Yoshio,et al.  Effect of Mn Source and Peculiar Cycle Characterization for LiAl0.1Mn1.9 O 4 Material in the 3 V Region , 2001 .

[411]  F. Rosciano,et al.  Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics , 2011 .

[412]  S. Lanceros-Méndez,et al.  Recent advances and future challenges in printed batteries , 2020, Energy Storage Materials.

[413]  C. Dietrich,et al.  Lithium Phosphidogermanates α- and β-Li8GeP4—A Novel Compound Class with Mixed Li+ Ionic and Electronic Conductivity , 2018, Chemistry of Materials.

[414]  Zonghai Chen,et al.  Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes , 2019, Nature Energy.

[415]  Kota Suzuki,et al.  Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .

[416]  M. Islam,et al.  Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. , 2017, ACS applied materials & interfaces.

[417]  J. Carrasco,et al.  Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte , 2017 .

[418]  Liquan Chen,et al.  Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives , 2018, Front. Chem..

[419]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[420]  C. Randall,et al.  Thermal-assisted cold sintering study of a lithium electrolyte: Li13.9Sr0.1Zn(GeO4)4 , 2020, Journal of Electroceramics.

[421]  Futoshi Matsumoto,et al.  Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries , 2020, Electrochem.

[422]  Shogo Komagata,et al.  All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .

[423]  Yang Shen,et al.  Solvent‐Free Synthesis of Thin, Flexible, Nonflammable Garnet‐Based Composite Solid Electrolyte for All‐Solid‐State Lithium Batteries , 2020, Advanced Energy Materials.

[424]  L. Archer,et al.  Solid-state polymer electrolytes stabilized by task-specific salt additives , 2019, Journal of Materials Chemistry A.

[425]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[426]  Xin Guo,et al.  Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3. , 2017, Physical chemistry chemical physics : PCCP.

[427]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[428]  Evan M. Erickson,et al.  Insights into the Cathode-electrolyte Interphases of High-energy-density Cathodes in Lithium-ion Batteries. , 2020, ACS applied materials & interfaces.

[429]  Wenjun Yang,et al.  Inside Cover: Synergistic N‐Heterocyclic Carbene/Palladium‐Catalyzed Umpolung 1,4‐Addition of Aryl Iodides to Enals (Angew. Chem. Int. Ed. 1/2020) , 2020 .

[430]  M. Pasquali,et al.  All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing , 2019, Journal of Power Sources.

[431]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[432]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[433]  W. Richards,et al.  Compatibility Issues Between Electrodes and Electrolytes in Solid-State Batteries , 2017 .

[434]  Guoying Chen,et al.  All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks , 2020, ACS Applied Energy Materials.

[435]  C. Yuan,et al.  Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites , 2020 .

[436]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[437]  Zhiqiang Gao,et al.  A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries , 2015 .

[438]  Xin-Bing Cheng,et al.  Advances in Interfaces between Li Metal Anode and Electrolyte , 2018 .

[439]  Liangbing Hu,et al.  3D‐Printing Electrolytes for Solid‐State Batteries , 2018, Advanced materials.

[440]  A. Schwöbel,et al.  Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission , 2015 .

[441]  H. Katsui,et al.  Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition , 2015 .

[442]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[443]  Soojin Park,et al.  Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. , 2015, Nano letters.

[444]  J. Maria,et al.  Cold sintering: Current status and prospects , 2017 .

[445]  Liu Chengbin,et al.  Preparation and Property of a Novel Heat-resistant Ceramic Composite Solid-state Electrolyte for Lithium Batteries , 2017 .

[446]  K. Amine,et al.  OLIVINE LICOPO4 AS 4.8 V ELECTRODE MATERIAL FOR LITHIUM BATTERIES , 1999 .

[447]  Fan Li,et al.  A durable and safe solid-state lithium battery with a hybrid electrolyte membrane , 2018 .

[448]  Ruifeng Xu,et al.  Interfacial challenges and progress for inorganic all-solid-state lithium batteries , 2018, Electrochimica Acta.

[449]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[450]  B. Kumar,et al.  Polymer-ceramic composite electrolytes , 1994 .

[451]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[452]  Qian Sun,et al.  Development of the cold sintering process and its application in solid-state lithium batteries , 2018, Journal of Power Sources.

[453]  M. Martínez-Ibañez,et al.  Flowable polymer electrolytes for lithium metal batteries , 2019, Journal of Power Sources.

[454]  Chunsheng Wang,et al.  A Battery Made from a Single Material , 2015, Advanced materials.

[455]  P. Chien,et al.  Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether , 2017 .

[456]  Jian-Fang Wu,et al.  In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. , 2018, ACS applied materials & interfaces.

[457]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[458]  A. Tiwari,et al.  Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries , 2017 .

[459]  E. Cussen,et al.  Structure and ionic conductivity in lithium garnets , 2010 .

[460]  Jin Zheng,et al.  New Insights into the Compositional Dependence of Li-Ion Transport in Polymer-Ceramic Composite Electrolytes. , 2018, ACS applied materials & interfaces.

[461]  C. Bernuy-López,et al.  Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics , 2014 .

[462]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[463]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[464]  Xinmiao Liang,et al.  In-Channel and In-Plane Li Ion Diffusions in the Superionic Conductor Li10GeP2S12 Probed by Solid-State NMR , 2015 .

[465]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[466]  Ya‐Xia Yin,et al.  Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High‐Voltage Lithium Metal Batteries , 2019, Advanced materials.

[467]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[468]  K. Kanamura,et al.  Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes , 1995 .

[469]  Yuming Zhao,et al.  Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Cross-Linking Film , 2019, ACS Energy Letters.

[470]  K. Zaghib,et al.  Toward high lithium conduction in solid polymer and polymer–ceramic batteries , 2018, Current Opinion in Electrochemistry.

[471]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li₂S-P₂S₅ solid electrolytes by pulsed laser deposition. , 2013, ACS applied materials & interfaces.

[472]  Shaofei Wang,et al.  Polymer lithium-garnet interphase for an all-solid-state rechargeable battery , 2018, Nano Energy.

[473]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[474]  J. Goodenough,et al.  Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-situ Scanning Electron Microscopy. , 2020, Nano letters.

[475]  S. Choi,et al.  Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries , 2004 .

[476]  Young Jin Nam,et al.  Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. , 2017, Nano letters.

[477]  S. Taminato,et al.  LISICON-Based Amorphous Oxide for Bulk-Type All-Solid-State Lithium-Ion Battery , 2020 .

[478]  James W. Evans,et al.  Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance , 2000 .

[479]  Asma Sharafi,et al.  Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium , 2016, Front. Energy Res..

[480]  H. Munakata,et al.  Effect of Gold Layer on Interface Resistance between Lithium Metal Anode and Li6.25Al0.25La3Zr2O12 Solid Electrolyte , 2017 .

[481]  D. Portehault,et al.  Microwave-assisted reactive sintering and lithium ion conductivity of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte , 2018 .

[482]  S. Passerini,et al.  Hybrid electrolytes for lithium metal batteries , 2018, Journal of Power Sources.

[483]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[484]  K. Zaghib,et al.  Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries , 2019, Journal of Power Sources.

[485]  Jian Xin Wang,et al.  A novel solid-liquid route for synthesizing cubic garnet Al-substituted Li7La3Zr2O12 , 2018 .

[486]  D. M. Mattox Chapter 6 – Vacuum Evaporation and Vacuum Deposition , 2010 .

[487]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[488]  A. Pearse,et al.  Atomic Layer Deposition of the Solid Electrolyte LiPON , 2015 .

[489]  Kevin N. Wood,et al.  Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects , 2020, Journal of Materials Chemistry A.

[490]  I. Villaluenga,et al.  Polymer and composite electrolytes , 2018, MRS Bulletin.

[491]  Henghui Xu,et al.  Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte. , 2019, Angewandte Chemie.

[492]  Jinqiu Zhou,et al.  Non-flammable and High-Voltage-Tolerated Polymer Electrolyte achieving High Stability and Safety in 4.9 V-class Lithium Metal Battery. , 2019, ACS applied materials & interfaces.

[493]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[494]  Wmm Erwin Kessels,et al.  Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries , 2013 .

[495]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[496]  Yang-Tse Cheng,et al.  Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes. , 2019, ACS applied materials & interfaces.

[497]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.