Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis

[1]  M. Montserrat,et al.  Intraguild predation between phytoseiid mite species might not be so common , 2016, Experimental and Applied Acarology.

[2]  Yulin Gao,et al.  Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers , 2014 .

[3]  M. Saber,et al.  Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa , 2013, BioControl.

[4]  S. Reitz,et al.  Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. , 2012, Pest management science.

[5]  H. Spafford,et al.  Use of spinosad and predatory mites for the management of Frankliniella occidentalis in low tunnel‐grown strawberry , 2012 .

[6]  S. Reitz,et al.  Thrips: Pests of Concern to China and the United States , 2011 .

[7]  H. Spafford,et al.  Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry , 2011 .

[8]  K. Bolckmans,et al.  Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii , 2011, BioControl.

[9]  H. Spafford,et al.  Effect of spinosad and predatory mites on control of Frankliniella occidentalis in three strawberry cultivars , 2011 .

[10]  Xingming Liang,et al.  The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse , 2010 .

[11]  M. Sabelis,et al.  Biological control of an acarine pest by single and multiple natural enemies , 2009 .

[12]  C. Scott-dupree,et al.  Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) , 2009, Bulletin of Entomological Research.

[13]  K. Moder,et al.  Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators , 2009, Bulletin of Entomological Research.

[14]  A. Chow,et al.  Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses , 2008 .

[15]  A. Sih,et al.  The influence of intraguild predation on prey suppression and prey release: a meta-analysis. , 2007, Ecology.

[16]  J. Fitzgerald,et al.  Interactions among predators and phytophagous mites on apple; possible impact on biocontrol of Panonychus ulmi by Typhlodromus pyri in orchards , 2007 .

[17]  Pablo A. Marquet,et al.  Intraguild predation: a widespread interaction related to species biology , 2004 .

[18]  H. Poehling,et al.  The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages , 2004 .

[19]  C. Borgemeister,et al.  Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis , 2003, BioControl.

[20]  D. Walter,et al.  Exotic vs endemic biocontrol agents: Would the real stratiolaelaps miles (Berlese) (Acari : Mesostigmata : Laelapidae), please stand up? , 2003 .

[21]  A. Walzer,et al.  Combined versus Single Species Release of Predaceous Mites: Predator–Predator Interactions and Pest Suppression , 2001 .

[22]  J. Rosenheim SOURCE–SINK DYNAMICS FOR A GENERALIST INSECT PREDATOR IN HABITATS WITH STRONG HIGHER-ORDER PREDATION , 2001 .

[23]  R C Littell,et al.  Mixed Models: Modelling Covariance Structure in the Analysis of Repeated Measures Data , 2005 .

[24]  H. Koehler Predatory mites (Gamasina, Mesostigmata) , 1999 .

[25]  Jay A. Rosenheim,et al.  Intraguild predation among biological-control agents: theory and evidence , 1995 .

[26]  B. Croft,et al.  Inoculative Release of Phytoseiid Mites (Acarina: Phytoseiidae) into the Rapidly Expanding Canopy of Hops for Control of Tetranychus urticae (Acarina: Tetranychidae) , 1995 .

[27]  David A. Spiller Interspecific Competition Between Spiders and Its Relevance to Biological Control by General Predators , 1986 .

[28]  J. Bale,et al.  Intraguild Predation and Feeding Preferences in Three Species of Phytoseiid Mite Used for Biological Control , 2005, Experimental & Applied Acarology.

[29]  I. Cakmak,et al.  Intraguild Interactions Between the Predatory Mites Neoseiulus californicus and Phytoseiulus persimilis , 2005, Experimental & Applied Acarology.

[30]  H. Poehling,et al.  Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips , 2004, Experimental & Applied Acarology.

[31]  M. Sabelis,et al.  Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa , 2004, Experimental & Applied Acarology.

[32]  O. Berndt Entomopathogenic nematodes and soil-dwelling predatory mites : suitable antagonists for enhanced biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)? , 2003 .

[33]  Ramon C. Littell,et al.  TUTORIAL IN BIOSTATISTICS: MODELLING COVARIANCE STRUCTURE IN THE ANALYSIS OF REPEATED MEASURES DATA , 2000 .

[34]  M. Tommasini,et al.  Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. , 1995 .

[35]  P. Lehtinen Review: Acari (Acarina), Milben. Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. Raubmilben , 1994 .

[36]  P. Rijn,et al.  Factors affecting the attack success of predatory mites on thrips larvae. , 1990 .

[37]  G. Polis,et al.  THE ECOLOGY AND EVOLUTION OF INTRAGUILD PREDATION: Potential Competitors That Eat Each Other , 1989 .