Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis
暂无分享,去创建一个
Zhike Zhang | Yulin Gao | Z. Lei | Shengyong Wu | Xuenong Xu
[1] M. Montserrat,et al. Intraguild predation between phytoseiid mite species might not be so common , 2016, Experimental and Applied Acarology.
[2] Yulin Gao,et al. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers , 2014 .
[3] M. Saber,et al. Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa , 2013, BioControl.
[4] S. Reitz,et al. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. , 2012, Pest management science.
[5] H. Spafford,et al. Use of spinosad and predatory mites for the management of Frankliniella occidentalis in low tunnel‐grown strawberry , 2012 .
[6] S. Reitz,et al. Thrips: Pests of Concern to China and the United States , 2011 .
[7] H. Spafford,et al. Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry , 2011 .
[8] K. Bolckmans,et al. Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii , 2011, BioControl.
[9] H. Spafford,et al. Effect of spinosad and predatory mites on control of Frankliniella occidentalis in three strawberry cultivars , 2011 .
[10] Xingming Liang,et al. The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse , 2010 .
[11] M. Sabelis,et al. Biological control of an acarine pest by single and multiple natural enemies , 2009 .
[12] C. Scott-dupree,et al. Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) , 2009, Bulletin of Entomological Research.
[13] K. Moder,et al. Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators , 2009, Bulletin of Entomological Research.
[14] A. Chow,et al. Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses , 2008 .
[15] A. Sih,et al. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. , 2007, Ecology.
[16] J. Fitzgerald,et al. Interactions among predators and phytophagous mites on apple; possible impact on biocontrol of Panonychus ulmi by Typhlodromus pyri in orchards , 2007 .
[17] Pablo A. Marquet,et al. Intraguild predation: a widespread interaction related to species biology , 2004 .
[18] H. Poehling,et al. The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages , 2004 .
[19] C. Borgemeister,et al. Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis , 2003, BioControl.
[20] D. Walter,et al. Exotic vs endemic biocontrol agents: Would the real stratiolaelaps miles (Berlese) (Acari : Mesostigmata : Laelapidae), please stand up? , 2003 .
[21] A. Walzer,et al. Combined versus Single Species Release of Predaceous Mites: Predator–Predator Interactions and Pest Suppression , 2001 .
[22] J. Rosenheim. SOURCE–SINK DYNAMICS FOR A GENERALIST INSECT PREDATOR IN HABITATS WITH STRONG HIGHER-ORDER PREDATION , 2001 .
[23] R C Littell,et al. Mixed Models: Modelling Covariance Structure in the Analysis of Repeated Measures Data , 2005 .
[24] H. Koehler. Predatory mites (Gamasina, Mesostigmata) , 1999 .
[25] Jay A. Rosenheim,et al. Intraguild predation among biological-control agents: theory and evidence , 1995 .
[26] B. Croft,et al. Inoculative Release of Phytoseiid Mites (Acarina: Phytoseiidae) into the Rapidly Expanding Canopy of Hops for Control of Tetranychus urticae (Acarina: Tetranychidae) , 1995 .
[27] David A. Spiller. Interspecific Competition Between Spiders and Its Relevance to Biological Control by General Predators , 1986 .
[28] J. Bale,et al. Intraguild Predation and Feeding Preferences in Three Species of Phytoseiid Mite Used for Biological Control , 2005, Experimental & Applied Acarology.
[29] I. Cakmak,et al. Intraguild Interactions Between the Predatory Mites Neoseiulus californicus and Phytoseiulus persimilis , 2005, Experimental & Applied Acarology.
[30] H. Poehling,et al. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips , 2004, Experimental & Applied Acarology.
[31] M. Sabelis,et al. Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa , 2004, Experimental & Applied Acarology.
[32] O. Berndt. Entomopathogenic nematodes and soil-dwelling predatory mites : suitable antagonists for enhanced biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)? , 2003 .
[33] Ramon C. Littell,et al. TUTORIAL IN BIOSTATISTICS: MODELLING COVARIANCE STRUCTURE IN THE ANALYSIS OF REPEATED MEASURES DATA , 2000 .
[34] M. Tommasini,et al. Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. , 1995 .
[35] P. Lehtinen. Review: Acari (Acarina), Milben. Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. Raubmilben , 1994 .
[36] P. Rijn,et al. Factors affecting the attack success of predatory mites on thrips larvae. , 1990 .
[37] G. Polis,et al. THE ECOLOGY AND EVOLUTION OF INTRAGUILD PREDATION: Potential Competitors That Eat Each Other , 1989 .