Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

[1]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[2]  A. Bouhelier,et al.  Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons , 2012 .

[3]  F. Lederer,et al.  Multipole analysis of meta-atoms , 2011 .

[4]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[5]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[6]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[7]  Marko Lonvcar,et al.  Enhanced single-photon emission from a diamond–silver aperture , 2011, 1105.4096.

[8]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[9]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Richard A. Soref,et al.  Practical enhancement of photoluminescence by metal nanoparticles , 2009 .

[12]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[13]  A. Koenderink On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.

[14]  Zhi-Hong Zhu,et al.  Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots , 2010 .

[15]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[16]  G. Moussa,et al.  Fabrication, Characterization and Optical Properties of CuIn 3 Se 5 Bulk Compounds , 2015 .

[17]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[18]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[19]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[20]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[21]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[22]  Jean-Michel Gérard,et al.  Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots , 2003 .

[23]  Y. Kivshar,et al.  Plasmonic nanoantennas for efficient control of polarization-entangled photon pairs , 2012, 1206.5203.

[24]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[25]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[26]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[27]  H. Gibbs,et al.  Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. , 2010, Optics express.

[28]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[29]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[30]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[31]  Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects , 2009 .

[32]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[33]  A. Toropov,et al.  Optically enhanced emission of localized excitons in InxGa1-xN films by coupling to plasmons in a gold nanoparticle. , 2009, Physical review letters.

[34]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[35]  Zhixiang Huang,et al.  Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium. , 2012, Physical review letters.

[36]  Nikolay I. Zheludev The road ahead for active controllable and quantum metamaterials , 2010 .

[37]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[38]  Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells , 2011, 1105.3523.

[39]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[40]  Carsten Rockstuhl,et al.  On the reinterpretation of resonances in split-ring-resonators at normal incidence. , 2006, Optics express.

[41]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[42]  F Schmidt,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.

[43]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in Josephson qubit lines , 2009 .

[44]  Daniel Chen,et al.  Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties , 2010 .

[45]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[46]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[47]  N. Zheludev,et al.  Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. , 2010, Physical review letters.

[48]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[49]  Carsten Rockstuhl,et al.  The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach. , 2007, Optics express.

[50]  Stefan Linden,et al.  Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers , 2011 .

[51]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[52]  Kurt Busch,et al.  Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy , 2011 .

[53]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[54]  Stefan Linden,et al.  Retarded long-range interaction in split-ring-resonator square arrays , 2011 .

[55]  H. Eghlidi,et al.  Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. , 2012, Optics express.

[56]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[57]  Luca Dal Negro,et al.  Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[58]  R.T. Brown,et al.  Topics in applied physics , 1980, Proceedings of the IEEE.

[59]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[60]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[61]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[62]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[63]  Mark L Brongersma,et al.  Plasmonic beaming and active control over fluorescent emission. , 2011, Nature communications.

[64]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.