Object tracking in videos using adaptive mixture models and active contours

In this paper, we propose a novel object tracking algorithm for video sequences, based on active contours. The tracking is based on matching the object appearance model between successive frames of the sequence using active contours. We formulate the tracking as a minimization of an objective function incorporating region, boundary and shape information. Further, in order to handle variation in object appearance due to self-shadowing, changing illumination conditions and camera geometry, we propose an adaptive mixture model for the object representation. The implementation of the method is based on the level set method. We validate our approach on tracking examples using real video sequences, with comparison to two recent state-of-the-art methods.

[1]  Abdol-Reza Mansouri,et al.  Region Tracking via Level Set PDEs without Motion Computation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Janusz Konrad,et al.  Multiple motion segmentation with level sets , 2003, IEEE Trans. Image Process..

[4]  Djemel Ziou,et al.  A Robust Video Object Tracking by Using Active Contours , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[5]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rachid Deriche,et al.  Geodesic active regions and level set methods for motion estimation and tracking , 2005, Comput. Vis. Image Underst..

[9]  Djemel Ziou,et al.  Active contours for video object tracking using region, boundary and shape information , 2007, Signal Image Video Process..

[10]  Shiuh-Ku Weng,et al.  Video object tracking using adaptive Kalman filter , 2006, J. Vis. Commun. Image Represent..

[11]  Shaogang Gong,et al.  Tracking colour objects using adaptive mixture models , 1999, Image Vis. Comput..

[12]  James R. Hopgood,et al.  Nonconcurrent multiple speakers tracking based on extended Kalman particle filter , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Nizar Bouguila,et al.  A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[14]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Djemel Ziou,et al.  Automatic Color-Texture Image Segmentation by Using Active Contours , 2006, IWICPAS.

[16]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[17]  Anthony J. Yezzi,et al.  Fast incorporation of optical flow into active polygons , 2005, IEEE Transactions on Image Processing.

[18]  Tieniu Tan,et al.  Real-time hand tracking using a mean shift embedded particle filter , 2007, Pattern Recognit..

[19]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[20]  Stefano Soatto,et al.  A Pseudo-distance for Shape Priors in Level Set Segmentation , 2003 .

[21]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[23]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[24]  C. Drewniok,et al.  Multi-spectral edge detection. Some experiments on data from Landsat-TM , 1994 .

[25]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[26]  F. Ghoreishi,et al.  The Tau method and a new preconditioner , 2004 .

[27]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[29]  Ferran Marqués,et al.  Region-based representations of image and video: segmentation tools for multimedia services , 1999, IEEE Trans. Circuits Syst. Video Technol..

[30]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Xuelong Li,et al.  Elapsed Time in Human Gait Recognition: A New Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[32]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jie Yang,et al.  Flexible background mixture models for foreground segmentation , 2006, Image Vis. Comput..

[34]  Tao Zhang,et al.  Improving performance of distribution tracking through background mismatch , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[36]  Georgios Tziritas,et al.  Bayesian Level Sets for Image Segmentation , 2002, J. Vis. Commun. Image Represent..